|   | 
Details
   web
Records
Author (up) Abdalla, E. et al; Mena, O.
Title Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies Type Journal Article
Year 2022 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.
Volume 34 Issue Pages 49-211
Keywords
Abstract The standard Lambda Cold Dark Matter (Lambda CDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H-0, the sigma(8)-S-8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0 sigma tension between the Planck CMB estimate of the Hubble constant H-0 and the SH0ES collaboration measurements. After showing the H-0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Omega(m), and the amplitude or rate of the growth of structure (sigma(8), f sigma(8)). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H-0-S-8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions.
Address [Abdalla, Elcio] Univ Sao Paulo, Inst Fis, CP 66318, BR-0531597 Sao Paulo, Brazil, Email: e.divalentino@sheffield.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-4048 ISBN Medium
Area Expedition Conference
Notes WOS:000807122400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5465
Permanent link to this record
 

 
Author (up) Abdallah, J. et al; Carrio, F.; Fiorini, L.; Garcia Aparisi, F.B.; Rodriguez Bosca, S.; Valero, A.; Zuccarello, P.D.
Title Study of energy response and resolution of the ATLAS Tile Calorimeter to hadrons of energies from 16 to 30 GeV Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 6 Pages 549 - 18pp
Keywords
Abstract Three spare modules of the ATLAS Tile Calorimeter were exposed to test beams from the Super Proton Synchrotron accelerator at CERN in 2017. The detector's measurements of the energy response and resolution to positive pions and kaons, and protons with energies ranging from 16 to 30 GeV are reported. The results have uncertainties of a few percent. They were compared to the predictions of the Geant4-based simulation program used in ATLAS to estimate the response of the detector to proton-proton events at the Large Hadron Collider. The determinations obtained using experimental and simulated data agree within the uncertainties.
Address [Abdallah, Jalal; Hadavand, Haleh; Hibbard, Michael James; Little, Jared; Moayedi, Seyedali; Usai, Giulio] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: tigran.mkrtchyan@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000680462500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4899
Permanent link to this record
 

 
Author (up) Abdesselam, A. et al; Vos, M.; Fassi, F.
Title Boosted objects: a probe of beyond the standard model physics Type Journal Article
Year 2011 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 71 Issue 6 Pages 1661 - 19pp
Keywords
Abstract We present the report of the hadronic working group of the BOOST2010 workshop held at the University of Oxford in June 2010. The first part contains a review of the potential of hadronic decays of highly boosted particles as an aid for discovery at the LHC and a discussion of the status of tools developed to meet the challenge of reconstructing and isolating these topologies. In the second part, we present new results comparing the performance of jet grooming techniques and top tagging algorithms on a common set of benchmark channels. We also study the sensitivity of jet substructure observables to the uncertainties in Monte Carlo predictions.
Address [Abdesselam, A; Frandsen, MT; March-Russell, J] Univ Oxford, Dept Phys, Dalitz Inst Theoret Phys, Oxford OX1 3RH, England, Email: muge.karagoz@physics.ox.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000292556400024 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 706
Permanent link to this record
 

 
Author (up) Abdullahi, A.M. et al; Lopez-Pavon, J.
Title The present and future status of heavy neutral leptons Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue 2 Pages 020501 - 100pp
Keywords Neutrinos; beyond the standard model; sterile neutrinos
Abstract The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios.
Address [Abdullahi, Asli M.; Plestid, Ryan] Fermilab Natl Accelerator Lab, Theoret Phys Dept, POB 500, Batavia, IL 60510 USA, Email: shoemaker@vt.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000918351600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5486
Permanent link to this record
 

 
Author (up) AbdusSalam, S.S. et al; Eberhardt, O.
Title Simple and statistically sound recommendations for analysing physical theories Type Journal Article
Year 2022 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.
Volume 85 Issue 5 Pages 052201 - 11pp
Keywords particle physics; statistics; methodology
Abstract Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be reproduced with the code publicly available at Zenodo.
Address [AbdusSalam, Shehu S.; Fowlie, Andrew] Shahid Beheshti Univ, Dept Phys, Tehran, Iran, Email: andrew.j.fowlie@njnu.edu.cn
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4885 ISBN Medium
Area Expedition Conference
Notes WOS:000791574900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5221
Permanent link to this record