toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fanchiotti, H.; Garcia Canal, C.A.; Mayosky, M.; Veiga, A.; Vento, V. url  doi
openurl 
  Title Measuring the Hannay geometric phase Type Journal Article
  Year 2022 Publication American Journal of Physics Abbreviated Journal (up) Am. J. Phys.  
  Volume 90 Issue 6 Pages 430-435  
  Keywords  
  Abstract The Hannay geometric phase is the classical analog of the well-known Berry phase. Its most familiar example is the effect of the latitude lambda on the motion of a Foucault pendulum. We describe an electronic network whose behavior is exactly equivalent to that of the pendulum. The circuit can be constructed from off-the-shelf components using two matched transconductance amplifiers that comprise a gyrator to introduce the non-reciprocal behavior needed to mimic the pendulum. One may precisely measure the dependence of the Hannay phase on lambda by circuit simulation and by laboratory measurements on a constructed circuit.  
  Address [Fanchiotti, H.; Canal, C. A. Garcia] Univ Nacl La Plata, IFLP, CONICET, CC67, RA-1900 La Plata, Argentina  
  Corporate Author Thesis  
  Publisher AIP Publishing Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000804547100009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5276  
Permanent link to this record
 

 
Author Davesne, D.; Becker, P.; Pastore, A.; Navarro, J. url  doi
openurl 
  Title Infinite matter properties and zero-range limit of non-relativistic finite-range interactions Type Journal Article
  Year 2016 Publication Annals of Physics Abbreviated Journal (up) Ann. Phys.  
  Volume 375 Issue Pages 288-312  
  Keywords Equation of state; Effective interaction; Infinite matter  
  Abstract We discuss some infinite matter properties of two finite-range interactions widely used for nuclear structure calculations, namely Gogny and M3Y interactions. We show that some useful informations can be deduced for the central, tensor and spin orbit terms from the spin-isospin channels and the partial wave decomposition of the symmetric nuclear matter equation of state. We show in particular that the central part of the Gogny interaction should benefit from the introduction of a third Gaussian and the tensor parameters of both interactions can be deduced from special combinations of partial waves. We also discuss the fact that the spin orbit of the M3Y interaction is not compatible with local gauge invariance. Finally, we show that the zero-range limit of both families of interactions coincides with the specific form of the zero-range Skyrme interaction extended to higher momentum orders and we emphasize from this analogy its benefits.  
  Address [Davesne, D.; Becker, P.] Univ Lyon 1, Univ Lyon, CNRS IN2P3, Nucl Phys Inst Lyon,UMR 5822, F-69622 Villeurbanne, France, Email: pbecker@ipnl.in2p3.fr  
  Corporate Author Thesis  
  Publisher Academic Press Inc Elsevier Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-4916 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000389788100017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2887  
Permanent link to this record
 

 
Author Nieves, J.; Sobczyk, J.E. url  doi
openurl 
  Title In medium dispersion relation effects in nuclear inclusive reactions at intermediate and low energies Type Journal Article
  Year 2017 Publication Annals of Physics Abbreviated Journal (up) Ann. Phys.  
  Volume 383 Issue Pages 455-496  
  Keywords Neutrino-nucleus scattering; Quasielastic mechanism; Spectral function; RPA; Muon capture; Radiative pion capture  
  Abstract In a well-established many-body framework, successful in modeling a great variety of nuclear processes, we analyze the role of the spectral functions (SFs) accounting for the modifications of the dispersion relation of nucleons embedded in a nuclear medium. We concentrate in processes mostly governed by one-body mechanisms, and study possible approximations to evaluate the particle hole propagator using SFs. We also investigate how to include together SFs and long-range RPA-correlation corrections in the evaluation of nuclear response functions, discussing the existing interplay between both type of nuclear effects. At low energy transfers (<= 50 MeV), we compare our predictions for inclusive muon and radiative pion captures in nuclei, and charge-current (CC) neutrino-nucleus cross sections with experimental results. We also present an analysis of intermediate energy quasi-elastic neutrino scattering for various targets and both neutrino and antineutrino CC driven processes. In all cases, we pay special attention to estimate the uncertainties affecting the theoretical predictions. In particular, we show that errors on the a,,sigma(mu)/sigma(e) ratio are much smaller than 5%, and also much smaller than the size of the SF+RPA nuclear corrections, which produce significant effects, not only in the individual cross sections, but also in their ratio for neutrino energies below 400 MeV. These latter nuclear corrections, beyond Pauli blocking, turn out to be thus essential to achieve a correct theoretical understanding of this ratio of cross sections of interest for appearance neutrino oscillation experiments. We also briefly compare our SF and RPA results to predictions obtained within other representative approaches.  
  Address [Nieves, Juan] Univ Valencia, CSIC,Ctr Mixto, Inst Invest Paterna, Inst Fis Corpuscular IFIC, Apartado 22085, E-46071 Valencia, Spain, Email: jmnieves@ific.uv.es  
  Corporate Author Thesis  
  Publisher Academic Press Inc Elsevier Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-4916 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000407667300025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3244  
Permanent link to this record
 

 
Author Richard, J.M.; Valcarce, A.; Vijande, J. url  doi
openurl 
  Title Hall-Post inequalities: Review and application to molecules and tetraquarks Type Journal Article
  Year 2020 Publication Annals of Physics Abbreviated Journal (up) Ann. Phys.  
  Volume 412 Issue Pages 168009 - 32pp  
  Keywords Hall-Post inequality; Few Body; Molecule; Quark model; Baryons; Tetraquark  
  Abstract A review is presented of the Hall-Post inequalities that give lower-bounds to the ground-state energy of quantum systems in terms of energies of smaller systems. New applications are given for systems experiencing both a static source and inner interactions, as well as for hydrogen-like molecules and for tetraquarks in some quark models. In the latter case, the Hall-Post inequalities constrain the possibility of deeply-bound exotic mesons below the threshold for dissociation into two quark-antiquark mesons. We also emphasize the usefulness of the Hall-Post bounds in terms of 3-body energies when some 2-body subsystems are ill defined or do not support any bound state.  
  Address [Richard, Jean-Marc] Univ Lyon, Inst Phys Deux Infinis, IN2P3, CNRS,UCBL, 4 Rue Enrico Fermi, F-69622 Villeurbanne, France, Email: j-m.richard@ipnl.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Academic Press Inc Elsevier Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-4916 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000509419600017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4262  
Permanent link to this record
 

 
Author Ahyoune, S. et al; Gimeno, B.; Reina-Valero, J. url  doi
openurl 
  Title A Proposal for a Low-Frequency Axion Search in the 1-2 μeV Range and Below with the BabyIAXO Magnet Type Journal Article
  Year 2023 Publication Annalen der Physik Abbreviated Journal (up) Ann. Phys.  
  Volume 535 Issue 12 Pages 2300326 - 23pp  
  Keywords axions; dark matter; dark photons; haloscopes; IAXO  
  Abstract In the near future BabyIAXO will be the most powerful axion helioscope, relying on a custom-made magnet of two bores of 70 cm diameter and 10 m long, with a total available magnetic volume of more than 7 m(3). In this document, it proposes and describe the implementation of low-frequency axion haloscope setups suitable for operation inside the BabyIAXO magnet. The RADES proposal has a potential sensitivity to the axion-photon coupling g(alpha gamma) down to values corresponding to the KSVZ model, in the (currently unexplored) mass range between 1 and 2 μeV, after a total effective exposure of 440 days. This mass range is covered by the use of four differently dimensioned 5-meter-long cavities, equipped with a tuning mechanism based on inner turning plates. A setup like the one proposed will also allow an exploration of the same mass range for hidden photons coupled to photons. An additional complementary apparatus is proposed using LC circuits and exploring the low energy range (approximate to 10(-4)-10(-1)mu eV). The setup includes a cryostat and cooling system to cool down the BabyIAXO bore down to about 5 K, as well as an appropriate low-noise signal amplification and detection chain.  
  Address [Ahyoune, Saiyd; Cuendis, Sergio Arguedas; Miralda-Escude, Jordi] Univ Barcelona, Inst Ciencies Cosmos, Barcelona 08028, Spain, Email: cogollos@mpp.mpg.de  
  Corporate Author Thesis  
  Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3804 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001095932700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5833  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva