|   | 
Details
   web
Record
Author (up) Aguilar, A.C.; Papavassiliou, J.
Title Chiral symmetry breaking with lattice propagators Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 1 Pages 014013 - 17pp
Keywords
Abstract We study chiral symmetry breaking using the standard gap equation, supplemented with the infrared-finite gluon propagator and ghost dressing function obtained from large-volume lattice simulations. One of the most important ingredients of this analysis is the non-Abelian quark-gluon vertex, which controls the way the ghost sector enters into the gap equation. Specifically, this vertex introduces a numerically crucial dependence on the ghost dressing function and the quark-ghost scattering amplitude. This latter quantity satisfies its own, previously unexplored, dynamical equation, which may be decomposed into individual integral equations for its various form factors. In particular, the scalar form factor is obtained from an approximate version of the “one-loop dressed” integral equation, and its numerical impact turns out to be rather considerable. The detailed numerical analysis of the resulting gap equation reveals that the constituent quark mass obtained is about 300 MeV, while fermions in the adjoint representation acquire a mass in the range of (750-962) MeV.
Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: Arlene.Aguilar@ufabc.edu.br
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000286765100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 584
Permanent link to this record