|   | 
Details
   web
Record
Author (up) Agullo, I.; Navarro-Salas, J.; Olmo, G.J.; Parker, L.
Title Revising the observable consequences of slow-roll inflation Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 4 Pages 043514 - 14pp
Keywords
Abstract We study the generation of primordial perturbations in a (single-field) slow-roll inflationary Universe. In momentum space, these (Gaussian) perturbations are characterized by a zero mean and a nonzero variance Delta(2) (k, t). However, in position space the variance diverges in the ultraviolet. The requirement of a finite variance in position space forces one to regularize Delta(2) (k, t). This can (and should) be achieved by proper renormalization in an expanding Universe in a unique way. This affects the predicted scalar and tensorial power spectra (evaluated when the modes acquire classical properties) for wavelengths that today are at observable scales. As a consequence, the imprint of slow-roll inflation on the cosmic microwave background anisotropies is significantly altered. We find a nontrivial change in the consistency condition that relates the tensor-to-scalar ratio r to the spectral indices. For instance, an exact scale-invariant tensorial power spectrum, n(t) = 0, is now compatible with a nonzero ratio r approximate to 0.12 +/- 0.06, which is forbidden by the standard prediction (r = -8n(t)). The influence of relic gravitational waves on the cosmic microwave background may soon come within the range of planned measurements, offering a nontrivial test of the new predictions.
Address [Agullo, Ivan; Olmo, Gonzalo J.; Parker, Leonard] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA, Email: ivan.agullo@uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000275898500028 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 479
Permanent link to this record