|   | 
Details
   web
Record
Author (up) Zhang, X.; Xiao, Y.T.; Gimeno, B.
Title Multipactor Suppression by a Resonant Static Magnetic Field on a Dielectric Surface Type Journal Article
Year 2020 Publication IEEE Transactions on Electron Devices Abbreviated Journal IEEE Trans. Electron Devices
Volume 67 Issue 12 Pages 5723-5728
Keywords Radio frequency; Dielectrics; Magnetic resonance; Discharges (electric); Surface discharges; Surface waves; Electrostatics; Monte Carlo simulation; multipactor discharge; orthogonal waves; resonant static magnetic field; secondary electron yield
Abstract In this article, we study the suppression of the multipactor phenomenon on a dielectric surface by a resonant static magnetic field. A homemade Monte Carlo algorithm is developed for multipactor simulations on a dielectric surface driven by two orthogonal radio frequency (RF) electric field components. When the static magnetic field is perpendicular to the tangential and normal RF electric fields, it is shown that if the normal electric field lags the tangential electric field by pi/2, the superposition of the normal and tangential electric fields will trigger a gyro-acceleration of the electron cloud and restrain the multipactor discharge effectively. By contrast, when the normal electric field is in advance of the tangential electric field by pi/2, the difference between the normal and tangential electric fields drives gyro-motion of the electron cloud. Consequently, two enhanced discharge zones are inevitable. The suppression effects of the resonant static magnetic field that is parallel to the tangential RF electric field or to the normal RF electric field are also presented.
Address [Zhang, Xue; Xiao, Yuting] Xiangtan Univ, Sch Automat & Elect Informat, Xiangtan 411105, Hunan, Peoples R China, Email: zhangxue.iecas@yahoo.com;
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9383 ISBN Medium
Area Expedition Conference
Notes WOS:000594337700064 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4627
Permanent link to this record