toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Perez, A. url  doi
openurl 
  Title Information encoding of a qubit into a multilevel environment Type Journal Article
  Year 2010 Publication (up) Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 81 Issue 5 Pages 052326 - 6pp  
  Keywords  
  Abstract I consider the interaction of a small quantum system (a qubit) with a structured environment consisting of many levels. The qubit will experience a decoherence process, which implies that part of its initial information will be encoded into correlations between system and environment. I investigate how this information is distributed on a given subset of levels as a function of its size, using the mutual information between both entities, in the spirit of the partial-information plots studied by Zurek and co-workers. In this case we can observe some differences, which arise from the fact that I am partitioning just one quantum system and not a collection of them. However, some similar features, like redundancy (in the sense that a given amount of information is shared by many subsets), which increases with the size of the environment, are also found here.  
  Address [Perez, A.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278140000064 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 445  
Permanent link to this record
 

 
Author Hinarejos, M.; Di Franco, C.; Romanelli, A.; Perez, A. url  doi
openurl 
  Title Chirality asymptotic behavior and non-Markovianity in quantum walks on a line Type Journal Article
  Year 2014 Publication (up) Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 89 Issue 5 Pages 052330 - 7pp  
  Keywords  
  Abstract We investigate the time evolution of the chirality reduced density matrix for a discrete-time quantum walk on a one-dimensional lattice. The matrix is obtained by tracing out the spatial degree of freedom. We analyze the standard case, without decoherence, and the situation in which decoherence appears in the form of broken links in the lattice. By examining the trace distance for possible pairs of initial states as a function of time, we conclude that the evolution of the reduced density matrix is non-Markovian, in the sense defined by Breuer, Laine, and Piilo [Phys. Rev. Lett. 103, 210401 (2009)]. As the level of noise increases, the dynamics approaches a Markovian process. The highest non-Markovianity corresponds to the case without decoherence. The reduced density matrix tends always to a well-defined limit that we calculate, but only in the decoherence-free case is this limit nontrivial.  
  Address [Hinarejos, Margarida; Perez, Armando] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000336751300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1807  
Permanent link to this record
 

 
Author Perez, A. url  doi
openurl 
  Title Asymptotic properties of the Dirac quantum cellular automaton Type Journal Article
  Year 2016 Publication (up) Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 93 Issue 1 Pages 012328 - 10pp  
  Keywords  
  Abstract We show that the Dirac quantum cellular automaton [A. Bisio, G. M. D'Ariano, and A. Tosini, Ann. Phys. (N. Y.) 354, 244 (2015)] shares many properties in common with the discrete-time quantum walk. These similarities can be exploited to study the automaton as a unitary process that takes place at regular time steps on a one-dimensional lattice, in the spirit of general quantum cellular automata. In this way, it becomes an alternative to the quantum walk, with a dispersion relation that can be controlled by a parameter that plays a similar role to the coin angle in the quantum walk. The Dirac Hamiltonian is recovered under a suitable limit. We provide two independent analytical approximations to the long-term probability distribution. It is shown that, starting from localized conditions, the asymptotic value of the entropy of entanglement between internal and motional degrees of freedom overcomes the known limit that is approached by the quantum walk for the same initial conditions and is similar to the ones achieved by highly localized states of the Dirac equation.  
  Address [Perez, A.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368291600005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2520  
Permanent link to this record
 

 
Author Gomis, P.; Perez, A. url  doi
openurl 
  Title Decoherence effects in the Stern-Gerlach experiment using matrix Wigner functions Type Journal Article
  Year 2016 Publication (up) Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 94 Issue 1 Pages 012103 - 11pp  
  Keywords  
  Abstract We analyze the Stern-Gerlach experiment in phase space with the help of the matrix Wigner function, which includes the spin degree of freedom. Such analysis allows for an intuitive visualization of the quantum dynamics of the device. We include the interaction with the environment, as described by the Caldeira-Leggett model. The diagonal terms of the matrix provide us with information about the two components of the state that arise from interaction with the magnetic field gradient. In particular, from the marginals of these components, we obtain an analytical formula for the position and momentum probability distributions in the presence of decoherence that shows a diffusive behavior for large values of the decoherence parameter. These features limit the dynamics of the present model. We also observe the decay of the nondiagonal terms with time and use this fact to quantify the amount of decoherence from the norm of those terms in phase space. From here, we can define a decoherence time scale, which differs from previous results that make use of the same model. We analyze a typical experiment and show that, for that setup, the decoherence time is much smaller than the characteristic time scale for the separation of the two beams, implying that they can be described as an incoherent mixture of atoms traveling in the up and down directions with opposite values of the spin projection. Therefore, entanglement is quickly destroyed in the setup we analyzed.  
  Address [Gomis, P.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: Pablo.Gomis@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000378909000003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2739  
Permanent link to this record
 

 
Author Arnault, P.; Di Molfetta, G.; Brachet, M.; Debbasch, F. url  doi
openurl 
  Title Quantum walks and non-Abelian discrete gauge theory Type Journal Article
  Year 2016 Publication (up) Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 94 Issue 1 Pages 012335 - 6pp  
  Keywords  
  Abstract A family of discrete-time quantum walks (DTQWs) on the line with an exact discrete U(N) gauge invariance is introduced. It is shown that the continuous limit of these DTQWs, when it exists, coincides with the dynamics of a Dirac fermion coupled to usual U(N) gauge fields in two-dimensional spacetime. A discrete generalization of the usual U(N) curvature is also constructed. An alternate interpretation of these results in terms of superimposed U(1) Maxwell fields and SU(N) gauge fields is discussed in the Appendix. Numerical simulations are also presented, which explore the convergence of the DTQWs towards their continuous limit and which also compare the DTQWs with classical (i.e., nonquantum) motions in classical SU(2) fields. The results presented in this paper constitute a first step towards quantum simulations of generic Yang-Mills gauge theories through DTQWs.  
  Address [Arnault, Pablo; Debbasch, Fabrice] Univ Paris 06, Univ Paris 04, PSL Res Univ, LERMA,Observ Paris,CNRS,UMR 8112, F-75014 Paris, France, Email: pablo.arnault@upmc.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000380095000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2761  
Permanent link to this record
 

 
Author Bru, L.A.; de Valcarcel, G.J.; Di Molfetta, G.; Perez, A.; Roldan, E.; Silva, F. url  doi
openurl 
  Title Quantum walk on a cylinder Type Journal Article
  Year 2016 Publication (up) Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 94 Issue 3 Pages 032328 - 7pp  
  Keywords  
  Abstract We consider the two-dimensional alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or “hidden” extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasimomentum in the closed dimension. In the continuous space-time limit, the different components manifest as a set of Dirac equations, with each quasimomentum providing the value of the corresponding mass. We briefly discuss the possible link of these ideas to the simulation of high-energy physical theories that include extra dimensions. Finally, entanglement between the coin and spatial degrees of freedom is studied, showing that the entanglement entropy clearly overcomes the value reached with only one spatial dimension.  
  Address [Bru, Luis A.] Univ Politecn Valencia, ITEAM Res Inst, Opt & Quantum Commun Grp, Camino Vera S-N, E-46022 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384060700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2823  
Permanent link to this record
 

 
Author Marquez-Martin, I.; Di Molfetta, G.; Perez, A. url  doi
openurl 
  Title Fermion confinement via quantum walks in (2+1)-dimensional and (3+1)-dimensional space-time Type Journal Article
  Year 2017 Publication (up) Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 95 Issue 4 Pages 042112 - 5pp  
  Keywords  
  Abstract We analyze the properties of a two-and three-dimensional quantum walk that are inspired by the idea of a brane-world model put forward by Rubakov and Shaposhnikov [Phys. Lett. B 125, 136 (1983)]. In that model, particles are dynamically confined on the brane due to the interaction with a scalar field. We translated this model into an alternate quantum walk with a coin that depends on the external field, with a dependence which mimics a domain wall solution. As in the original model, fermions (in our case, the walker) become localized in one of the dimensions, not from the action of a random noise on the lattice (as in the case of Anderson localization) but from a regular dependence in space. On the other hand, the resulting quantum walk can move freely along the “ordinary” dimensions.  
  Address [Marquez-Martin, I.; Di Molfetta, G.; Perez, A.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: giuseppe.dimolfetta@lif.univ-mrs.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399931500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3102  
Permanent link to this record
 

 
Author Arrighi, P.; Di Molfetta, G.; Marquez-Martin, I.; Perez, A. url  doi
openurl 
  Title Dirac equation as a quantum walk over the honeycomb and triangular lattices Type Journal Article
  Year 2018 Publication (up) Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 97 Issue 6 Pages 062111 - 5pp  
  Keywords  
  Abstract A discrete-time quantum walk (QW) is essentially an operator driving the evolution of a single particle on the lattice, through local unitaries. Some QWs admit a continuum limit, leading to well-known physics partial differential equations, such as the Dirac equation. We show that these simulation results need not rely on the grid: the Dirac equation in (2 + 1) dimensions can also be simulated, through local unitaries, on the honeycomb or the triangular lattice, both of interest in the study of quantum propagation on the nonrectangular grids, as in graphene-like materials. The latter, in particular, we argue, opens the door for a generalization of the Dirac equation to arbitrary discrete surfaces.  
  Address [Arrighi, Pablo; Di Molfetta, Giuseppe; Marquez-Martin, Ivan] Aix Marseille Univ, Univ Toulon, LIS, CNRS, Marseille, France, Email: pablo.arrighi@univ-amu.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435076800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3624  
Permanent link to this record
 

 
Author Di Molfetta, G.; Soares-Pinto, D.O.; Duarte Queiros, S.M. url  doi
openurl 
  Title Elephant quantum walk Type Journal Article
  Year 2018 Publication (up) Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 97 Issue 6 Pages 062112 - 6pp  
  Keywords  
  Abstract We introduce an analytically treatable discrete time quantum walk in a one-dimensional lattice which combines non-Markovianity and hyperballistic diffusion associated with a Gaussian whose variance sigma(2)(t) grows cubicly with time sigma alpha t(3). These properties have have been numerically found in several systems, namely, tight-binding lattice models. For its rules, our model can be understood as the quantum version of the classical non-Markovian “elephant random walk” process for which the quantum coin operator only changes the value of the diffusion constant although, contrarily, to the classical coin.  
  Address [Di Molfetta, Giuseppe] Univ Toulon & Var, Aix Marseille Univ, Nat Computat Res Grp, CNRS,LIS, Marseille, France, Email: giuseppe.dimolfetta@lis-lab.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435076800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3625  
Permanent link to this record
 

 
Author Marquez-Martin, I.; Arnault, P.; Di Molfetta, G.; Perez, A. url  doi
openurl 
  Title Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks Type Journal Article
  Year 2018 Publication (up) Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 98 Issue 3 Pages 032333 - 8pp  
  Keywords  
  Abstract Gauge invariance is one of the more important concepts in physics. We discuss this concept in connection with the unitary evolution of discrete-time quantum walks in one and two spatial dimensions, when they include the interaction with synthetic, external electromagnetic fields. One introduces this interaction as additional phases that play the role of gauge fields. Here, we present a way to incorporate those phases, which differs from previous works. Our proposal allows the discrete derivatives, that appear under a gauge transformation, to treat time and space on the same footing, in a way which is similar to standard lattice gauge theories. By considering two steps of the evolution, we define a density current which is gauge invariant and conserved. In the continuum limit, the dynamics of the particle, under a suitable choice of the parameters, becomes the Dirac equation and the conserved current satisfies the corresponding conservation equation.  
  Address [Marquez-Martin, Ivan; Arnault, Pablo; Di Molfetta, Giuseppe; Perez, Armando] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: ivan.marquez@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446163200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3750  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva