|   | 
Details
   web
Records
Author (up) ATLAS Collaboration (Aad, G. et al); Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estañ, M.T.; Ros, E.; Salt, J.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.
Title Measurement of the inelastic proton-proton cross-section at sqrt(s)=7 TeV with the ATLAS detector Type Journal Article
Year 2011 Publication Nature Communications Abbreviated Journal Nat. Commun.
Volume 2 Issue Pages 463 - 14pp
Keywords
Abstract The dependence of the rate of proton-proton interactions on the centre-of-mass collision energy, root s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurement of the inelastic proton-proton interaction cross-section at a centre-of-mass energy, root s, of 7 TeV using the ATLAS detector at the Large Hadron Collider. Events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic crosssection of 60.3 +/- 2.1 mb is measured for xi > 5x10(-6), where xi is calculated from the invariant mass, M(X), of hadrons selected using the largest rapidity gap in the event. For diffractive events, this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV.
Address [Bechtle, P; Kuutmann, EB; Boehler, M; Ehrenfeld, W; Ferrara, V; Fischer, G; Glazov, A; Goebel, M; Fajardo, LSG; Da Costa, JGPF; Gosdzik, B; Gregor, IM; Hiller, KH; Hristova, I; Husemann, U; Belenguer, MJ; Johnert, S; Karnevskiy, M; Katzy, J; Kono, T; Lankford, AJ; Lobodzinska, E; Ludwig, D; Mattig, S; Medinnis, M; Mijovic, L; Monig, K; Naumann, T; Nozicka, M; Cavalcanti, TP; Petschull, D; Piec, SM; Placakyte, R; Qin, Z; Rubinskiy, I; Stelzer, HJ; Tackmann, K; Terwort, M; Vankov, P; Viti, M; Wildt, MA; Zhu, H] DESY, D-2000 Hamburg, Germany, Email: atlas.publications@cern.ch
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes WOS:000294807200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 758
Permanent link to this record
 

 
Author (up) Fougeres, C. et al; Domingo-Pardo, C.
Title Search for Na-22 in novae supported by a novel method for measuring femtosecond nuclear lifetimes Type Journal Article
Year 2023 Publication Nature Communications Abbreviated Journal Nat. Commun.
Volume 14 Issue 1 Pages 4536 - 7pp
Keywords
Abstract Classical novae are thermonuclear explosions in stellar binary systems, and important sources of Al-26 and Na-22. While ? rays from the decay of the former radioisotope have been observed throughout the Galaxy, Na-22 remains untraceable. Its half-life (2.6 yr) would allow the observation of its 1.275 MeV ?-ray line from a cosmic source. However, the prediction of such an observation requires good knowledge of its nucleosynthesis. The Na-22(p, ?)Mg-23 reaction remains the only source of large uncertainty about the amount of Na-22 ejected. Its rate is dominated by a single resonance on the short-lived state at 7785.0(7) keV in Mg-23. Here, we propose a combined analysis of particle-particle correlations and velocity-difference profiles to measure femtosecond nuclear lifetimes. The application of this method to the study of the Mg-23 states, places strong limits on the amount of Na-22 produced in novae and constrains its detectability with future space-borne observatories. The authors report a particle-particle correlation and velocity-difference profile method to measure nuclear lifetime. The results obtained for excited states of 23Mg are used to constrain the production of 22Na in the astrophysical novae explosions.
Address [Fougeres, Chloe; Santos, Francois de Oliveira; Michelagnoli, Caterina; Clement, Emmanuel; Kim, Yung Hee; Lemasson, Antoine; Boulay, Florent; Goupil, Johan; Li, Hongjie; Navin, Alahari; Ralet, Damien; Saillant, Frederic] Grand Accelerateur Natl Ions Lourds GANIL, CEA, IN2P3, DRF CNRS, Caen, France, Email: chloe.fougeres@gmail.com;
Corporate Author Thesis
Publisher Nature Portfolio Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001063751200012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5671
Permanent link to this record
 

 
Author (up) LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title Study of the doubly charmed tetraquark T-cc(+) Type Journal Article
Year 2022 Publication Nature Communications Abbreviated Journal Nat. Commun.
Volume 13 Issue 1 Pages 3351 - 19pp
Keywords
Abstract Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the (DD0)-D-0 pi(+) mass spectrum just below the D*+D-0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T-cc(+), tetraquark with a quark content of cc (u) over bar(d) over bar and spin-parity quantum numbers J(P) =1(+). Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*(+) mesons is consistent with the observed D-0 pi(+) mass distribution. To analyse the mass of the resonance and its coupling to the DID system, a dedicated model is developed under the assumption of an isoscalar axial-vector T-cc(+), state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T-cc(+), state. In addition, an unexpected dependence of the production rate on track multiplicity is observed.
Address [Aaij, R.; Butter, J. S.; Akiba, K. Carvalho; Sole, S. Ferreres; Gabriel, E.; Geertsema, R. E.; Greeven, L. M.; Heijhoff, K.; Hulsbergen, W.; Hynds, D.; Jans, E.; Ketel, T.; Klaver, S.; Koppenburg, P.; Kostiuk, I; Kuindersma, H. S.; Martinez, M. Lucio; Lukashenko, V; Mauri, A.; Merk, M.; Pellegrino, A.; Raven, G.; Gras, C. Sanchez; Schubiger, M.; Soares, M. Senghi; Snoch, A.; Tuning, N.; Usachov, A.; van Beuzekom, M.; Veronesi, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands, Email: Ivan.Belyaev@cern.ch
Corporate Author Thesis
Publisher Nature Portfolio Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000812556800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5280
Permanent link to this record
 

 
Author (up) Otten, S.; Caron, S.; de Swart, W.; van Beekveld, M.; Hendriks, L.; van Leeuwen, C.; Podareanu, D.; Ruiz de Austri, R.; Verheyen, R.
Title Event generation and statistical sampling for physics with deep generative models and a density information buffer Type Journal Article
Year 2021 Publication Nature Communications Abbreviated Journal Nat. Commun.
Volume 12 Issue 1 Pages 2985 - 16pp
Keywords
Abstract Simulating nature and in particular processes in particle physics require expensive computations and sometimes would take much longer than scientists can afford. Here, we explore ways to a solution for this problem by investigating recent advances in generative modeling and present a study for the generation of events from a physical process with deep generative models. The simulation of physical processes requires not only the production of physical events, but to also ensure that these events occur with the correct frequencies. We investigate the feasibility of learning the event generation and the frequency of occurrence with several generative machine learning models to produce events like Monte Carlo generators. We study three processes: a simple two-body decay, the processes e(+)e(-)-> Z -> l(+)l(-) and pp -> tt<mml:mo><overbar></mml:mover> including the decay of the top quarks and a simulation of the detector response. By buffering density information of encoded Monte Carlo events given the encoder of a Variational Autoencoder we are able to construct a prior for the sampling of new events from the decoder that yields distributions that are in very good agreement with real Monte Carlo events and are generated several orders of magnitude faster. Applications of this work include generic density estimation and sampling, targeted event generation via a principal component analysis of encoded ground truth data, anomaly detection and more efficient importance sampling, e.g., for the phase space integration of matrix elements in quantum field theories. Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies.
Address [Otten, Sydney; Caron, Sascha; de Swart, Wieske; van Beekveld, Melissa; Hendriks, Luc; Verheyen, Rob] Radboud Univ Nijmegen, Inst Math Astro & Particle Phys IMAPP, Nijmegen, Netherlands, Email: Sydney.Otten@ru.nl
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes WOS:000658761600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4862
Permanent link to this record