toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Abbar, S.; Capozzi, F. url  doi
openurl 
  Title Suppression of fast neutrino flavor conversions occurring at large distances in core-collapse supernovae Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 051 - 13pp  
  Keywords supernova neutrinos; core-collapse supernovae; neutrino astronomy; supernovas  
  Abstract Neutrinos propagating in dense neutrino media such as core-collapse supernovae and neutron star merger remnants can experience the so-called fast flavor conversions on scales much shorter than those expected in vacuum. A very generic class of fast flavor instabilities is the ones which are produced by the backward scattering of neutrinos off the nuclei at relatively large distances from the supernova core. In this study we demonstrate that despite their ubiquity, such fast instabilities are unlikely to cause significant flavor conversions if the population of neutrinos in the backward direction is not large enough. Indeed, the scattering-induced instabilities can mostly impact the neutrinos traveling in the backward direction, which represent only a small fraction of neutrinos at large radii. We show that this can be explained by the shape of the unstable flavor eigenstates, which can be extremely peaked at the backward angles.  
  Address [Abbar, Sajad] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany, Email: abbar@mpp.mpg.de;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000776551600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5186  
Permanent link to this record
 

 
Author (up) Achterberg, A.; Amoroso, S.; Caron, S.; Hendriks, L.; Ruiz de Austri, R.; Weniger, C. url  doi
openurl 
  Title A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 006 - 27pp  
  Keywords dark matter theory; dark matter simulations; dark matter experiments  
  Abstract Observations with the Fermi Large Area Telescope (LAT) indicate an excess in gamma rays originating from the center of our Galaxy. A possible explanation for this excess is the annihilation of Dark Matter particles. We have investigated the annihilation of neutralinos as Dark Matter candidates within the phenomenological Minimal Supersymmetric Standard Model (pMSSM). An iterative particle filter approach was used to search for solutions within the pMSSM. We found solutions that are consistent with astroparticle physics and collider experiments, and provide a fit to the energy spectrum of the excess. The neutralino is a Bino/Higgsino or Bino/Wino/Higgsino mixture with a mass in the range 84-92 GeV or 87-97 GeV annihilating into W bosons. A third solutions is found for a neutralino of mass 174-187 GeV annihilating into top quarks. The best solutions yield a Dark Matter relic density 0.06 < Omega h(2) < 0.13. These pMSSM solutions make clear forecasts for LHC, direct and indirect DM detection experiments. If the pMSSM explanation of the excess seen by Fermi-LAT is correct, a DM signal might be discovered soon.  
  Address [Achterberg, Abraham; Caron, Sascha; Hendriks, Luc] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Fac Sci, NL-6500 GL Nijmegen, Netherlands, Email: a.achterberg@astro.ru.nl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365046600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2455  
Permanent link to this record
 

 
Author (up) Achterberg, A.; van Beekveld, M.; Caron, S.; Gomez-Vargas, G.A.; Hendriks, L.; Ruiz de Austri, R. url  doi
openurl 
  Title Implications of the Fermi-LAT Pass 8 Galactic Center excess on supersymmetric dark matter Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 040 - 23pp  
  Keywords dark matter theory; galaxy morphology; cosmology of theories beyond the SM; dwarfs galaxies  
  Abstract The Fermi Collaboration has recently updated their analysis of gamma rays from the center of the Galaxy. They reconfirm the presence of an unexplained emission feature which is most prominent in the region of 1-10 GeV, known as the Galactic Center GeV excess (GCE). Although the GCE is now fi rmly detected, an interpretation of this emission as a signal of self-annihilating dark matter (DM) particles is not unambiguously possible due to systematic effects in the gamma-ray modeling estimated in the Galactic Plane. In this paper we build a covariance matrix, collecting different systematic uncertainties investigated in the Fermi Collaboration's paper that affect the GCE spectrum. We show that models where part of the GCE is due to annihilating DM is still consistent with the new data. We also re-evaluate the parameter space regions of the minimal supersymmetric Standard Model (MSSM) that can contribute dominantly to the GCE via neutralino DM annihilation. All recent constraints from DM direct detection experiments such as PICO, LUX, PandaX and Xenon1T, limits on the annihilation cross section from dwarf spheroidal galaxies and the Large Hadron Collider limits are considered in this analysis. Due to a slight shift in the energy spectrum of the GC excess with respect to the previous Fermi analysis, and the recent limits from direct detection experiments, we find a slightly shifted parameter region of the MSSM, compared to our previous analysis, that is consistent with the GCE. Neutralinos with a mass between 85-220 GeV can describe the excess via annihilation into a pair of W-bosons or top quarks. Remarkably, there are models with low fine-tuning among the regions that we have found. The complete set of solutions will be probed by upcoming direct detection experiments and with dedicated searches in the upcoming data of the Large Hadron Collider.  
  Address [Achterberg, Abraham; van Beekveld, Melissa; Caron, Sascha; Hendriks, Luc] Radboud Univ Nijmegen, Fac Sci, Inst Math Astrophys & Particle Phys, Mailbox 79,POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: a.achterberg@astro.ru.nl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000418922000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3439  
Permanent link to this record
 

 
Author (up) Adhikari, R. et al; Pastor, S.; Valle, J.W.F. url  doi
openurl 
  Title A White Paper on keV sterile neutrino Dark Matter Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 025 - 247pp  
  Keywords cosmological neutrinos; dark matter experiments; dark matter theory; particle physics – cosmology connection  
  Abstract We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved – cosmology, astrophysics, nuclear, and particle physics – in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.  
  Address [Drewes, M.; Ibarra, A.; Lasserre, T.; Oberauer, L.; Schoenert, S.] Tech Univ Munich, Phys Dept & Excellence Cluster Univ, James Franck Str 1, D-85748 Garching, Germany, Email: marcodrewes@gmail.com;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399409800025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3109  
Permanent link to this record
 

 
Author (up) Afonso, V.I.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title An infinite class of exact rotating black hole metrics of modified gravity Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 052 - 14pp  
  Keywords Exact solutions; black holes and black hole thermodynamics in GR and beyond; Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity  
  Abstract We build an infinite class of exact axisymmetric solutions of a metric-affine gravity theory, namely, Eddington-inspired Born-Infeld gravity, coupled to an anisotropic fluid as a matter source. The solution-generating method employed is not unique of this theory but can be extended to other Ricci-Based Gravity theories (RBGs), a class of theories built out of contractions of the Ricci tensor with the metric. This method exploits a correspondence between the space of solutions of General Relativity and that of RBGs, and is independent of the symmetries of the problem. For the particular case in which the fluid is identified with non-linear electromagnetic fields we explicitly derive the corresponding axisymmetric solutions. Finally, we use this result to work out the counterpart of the Kerr-Newman black hole when Maxwell electrodynamics is set on the metric-affine side. Our results open up an exciting new avenue for testing new gravitational phenomenology in the fields of gravitational waves and shadows out of rotating black holes.  
  Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Academ Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000776994500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5185  
Permanent link to this record
 

 
Author (up) Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title New scalar compact objects in Ricci-based gravity theories Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 044 - 20pp  
  Keywords modified gravity; gravity; GR black holes; Wormholes  
  Abstract Taking advantage of a previously developed method, which allows to map solutions of General Relativity into a broad family of theories of gravity based on the Ricci tensor (Ricci-based gravities), we find new exact analytical scalar field solutions by mapping the free-field static, spherically symmetric solution of General Relativity (GR) into quadratic f(R) gravity and the Eddington-inspired Born-Infeld gravity. The obtained solutions have some distinctive feature below the would-be Schwarzschild radius of a configuration with the same mass, though in this case no horizon is present. The compact objects found include wormholes, compact balls, shells of energy with no interior, and a new kind of object which acts as a kind of wormhole membrane. The latter object has Euclidean topology but connects antipodal points of its surface by transferring particles and null rays across its interior in virtually zero affine time. We point out the relevance of these results regarding the existence of compact scalar field objects beyond General Relativity that may effectively act as black hole mimickers.  
  Address [Afonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000507261900041 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4252  
Permanent link to this record
 

 
Author (up) Afonso, V.I.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Scalar geons in Born-Infeld gravity Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 031 - 35pp  
  Keywords modified gravity; Wormholes  
  Abstract The existence of static, spherically symmetric, self-gravitating scalar field solutions in the context of Born-Infeld gravity is explored. Upon a combination of analytical approximations and numerical methods, the equations for a free scalar field (without a potential term) are solved, verifying that the solutions recover the predictions of General Relativity far from the center but finding important new effects in the central regions. We find two classes of objects depending on the ratio between the Schwarzschild radius and a length scale associated to the Born-Infeld theory: massive solutions have a wormhole structure, with their throat at r = 2 M, while for the lighter configurations the topology is Euclidean. The total energy density of these solutions exhibits a solitonic profile with a maximum peaked away from the center, and located at the throat whenever a wormhole exists. The geodesic structure and curvature invariants are analyzed for the various configurations considered.  
  Address [Afonso, V. I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58109970 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000408311900031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3285  
Permanent link to this record
 

 
Author (up) Agarwalla, S.K.; Blennow, M.; Fernandez-Martinez, E.; Mena, O. url  doi
openurl 
  Title Neutrino probes of the nature of light dark matter Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 004 - 19pp  
  Keywords dark matter experiments; neutrino detectors  
  Abstract Dark matter particles gravitationally trapped inside the Sun may annihilate into Standard Model particles, producing a flux of neutrinos. The prospects of detecting these neutrinos in future multi-kt neutrino detectors designed for other physics searches are explored here. We study the capabilities of a 34/100 kt liquid argon detector and a 100 kt magnetized iron calorimeter detector. These detectors are expected to determine the energy and the direction of the incoming neutrino with unprecedented precision allowing for tests of the dark matter nature at very low dark matter masses, in the range of 10-25 GeV. By suppressing the atmospheric background with angular cuts, these techniques would be sensitive to dark matter-nucleon spin-dependent cross sections at the fb level, reaching down to a few ab for the most favorable annihilation channels and detector technology.  
  Address [Agarwalla, Sanjib Kumar; Mena, Olga] Univ Politecn Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296767000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 858  
Permanent link to this record
 

 
Author (up) Agullo, I.; Navarro-Salas, J.; Parker, L. url  doi
openurl 
  Title Enhanced local-type inflationary trispectrum from a non-vacuum initial state Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 019 - 13pp  
  Keywords inflation; non-gaussianity; quantum field theory on curved space; cosmological perturbation theory  
  Abstract We compute the primordial trispectrum for curvature perturbations produced during cosmic inflation in models with standard kinetic terms, when the initial quantum state is not necessarily the vacuum state. The presence of initial perturbations enhances the trispectrum amplitude for configuration in which one of the momenta, say k(3), is much smaller than the others, k(3) << k(1,2,4). For those squeezed con figurations the trispectrum acquires the so-called local form, with a scale dependent amplitude that can get values of order epsilon(k(1)/k(3))(2). This amplitude could be larger than the prediction of the so-called Maldacena consistency relation by a factor as large as 10(6), and could reach the sensitivity of forthcoming observations, even for single-field inflationary models.  
  Address [Agullo, Ivan] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA, Email: agullo@gravity.psu.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305415200020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1083  
Permanent link to this record
 

 
Author (up) Aja, B. et al; Gimeno, B. url  doi
openurl 
  Title The Canfranc Axion Detection Experiment (CADEx): search for axions at 90 GHz with Kinetic Inductance Detectors Type Journal Article
  Year 2022 Publication Journal of Cosmology And Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 044 - 29pp  
  Keywords dark matter experiments; axions; dark matter detectors  
  Abstract We propose a novel experiment, the Canfranc Axion Detection Experiment (CADEx), to probe dark matter axions with masses in the range 330-460 μeV, within the W-band (80-110 GHz), an unexplored parameter space in the well-motivated dark matter window of Quantum ChromoDynamics (QCD) axions. The experimental design consists of a microwave resonant cavity haloscope in a high static magnetic field coupled to a highly sensitive detecting system based on Kinetic Inductance Detectors via optimized quasi-optics (horns and mirrors). The experiment is in preparation and will be installed in the dilution refrigerator of the Canfranc Underground Laboratory. Sensitivity forecasts for axion detection with CADEx, together with the potential of the experiment to search for dark photons, are presented.  
  Address [Aja, Beatriz; Artal, Eduardo; de la Fuente, Luisa; Pablo Pascual, Juan] Univ Cantabria, Dept Ingn Comunicac, Plaza Ciencia, Santander 39005, Spain, Email: ajab@unican.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000934034600003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5478  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva