toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Akindinov, V. et al; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Letter of interest for a neutrino beam from Protvino to KM3NeT/ORCA Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 9 Pages 758 - 14pp  
  Keywords  
  Abstract The Protvino accelerator facility located in the Moscow region, Russia, is in a good position to offer a rich experimental research program in the field of neutrino physics. Of particular interest is the possibility to direct a neutrino beam from Protvino towards the KM3NeT/ORCA detector, which is currently under construction in the Mediterranean Sea 40 km offshore Toulon, France. This proposal is known as P2O. Thanks to its baseline of 2595 km, this experiment would yield an unparalleled sensitivity to matter effects in the Earth, allowing for the determination of the neutrino mass ordering with a high level of certainty after only a few years of running at a modest beam intensity of sensitivity to the leptonic CP-violating Dirac phase can be achieved. A second stage of the experiment, comprising a further intensity upgrade of the accelerator complex and a densified version of the ORCA detector (Super-ORCA), would allow for up to a 6 sigma\documentclass[12pt] resolution on the CP phase after 10 years of running with a 450 kW beam, competitive with other planned experiments. The initial composition and energy spectrum of the neutrino beam would need to be monitored by a near detector, to be constructed several hundred meters downstream from the proton beam target. The same neutrino beam and near detector set-up would also allow for neutrino-nucleus cross section measurements to be performed. A short-baseline sterile neutrino search experiment would also be possible.  
  Address [Akindinov, V; Kuzmin, K. S.; Zaborov, D.] NRC Kurchatov Inst, AI Alikhanov Inst Theoret & Expt Phys, Moscow, Russia, Email: zaborov@itep.ru  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000485982300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4144  
Permanent link to this record
 

 
Author (up) Albaladejo, M.; Fernandez-Soler, P.; Nieves, J. url  doi
openurl 
  Title Z(c)(3900): confronting theory and lattice simulations Type Journal Article
  Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 76 Issue 10 Pages 573 - 9pp  
  Keywords  
  Abstract We consider a recent T -matrix analysis by Albaladejo et al. (Phys Lett B 755: 337, 2016), which accounts for the J/psi pi and D*(D) over bar coupled-channels dynamics, and which successfully describes the experimental information concerning the recently discovered Z(c)(3900)(+/-). Within such scheme, the data can be similarly well described in two different scenarios, where Z(c)(3900) is either a resonance or a virtual state. To shed light into the nature of this state, we apply this formalism in a finite box with the aim of comparing with recent Lattice QCD (LQCD) simulations. We see that the energy levels obtained for both scenarios agree well with those obtained in the single-volume LQCD simulation reported in Prelovsek et al. (Phys Rev D 91: 014504, 2015), thus making it difficult to disentangle the two possibilities. We also study the volume dependence of the energy levels obtained with our formalism and suggest that LQCD simulations performed at several volumes could help in discerning the actual nature of the intriguing Z(c)(3900) state.  
  Address [Albaladejo, Miguel; Fernandez-Soler, Pedro; Nieves, Juan] Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: miguelalbaladejo@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000388981700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2877  
Permanent link to this record
 

 
Author (up) Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. url  doi
openurl 
  Title Contribution of constituent quark model c(s)over-bar states to the dynamics of the D*s0 (2317) and Ds1(2460) resonances Type Journal Article
  Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 78 Issue 9 Pages 722 - 22pp  
  Keywords  
  Abstract The masses of the D*(s0) (2317) and D-s1(2460) resonances lie below the DK and D* K thresholds respectively, which contradicts the predictions of naive quark models and points out to non-negligible effects of the D(*) K loops in the dynamics of the even-parity scalar (J(pi) = 0(+)) and axial-vector (J(pi) = 1(+)) c (s) over bar systems. Recent lattice QCD studies, incorporating the effects of the D(*) K channels, analyzed these spin-parity sectors and correctly described the D*(s0)(2317) – D-s1(2460) mass splitting. Motivated by such works, we study the structure of the D*(s0)(2317) and D-s1(2460) resonances in the framework of an effective field theory consistent with heavy quark spin symmetry, and that incorporates the interplay between D(*) K meson-meson degrees of freedom and bare P-wave c (s) over bar states predicted by constituent quark models. We extend the scheme to finite volumes and fit the strength of the coupling between both types of degrees of freedom to the available lattice levels, which we successfully describe. We finally estimate the size of the D(*) K two-meson components in the D*(s0)(2317) and D-s1(2460) resonances, and we conclude that these states have a predominantly hadronic-molecular structure, and that it should not be tried to accommodate these mesons within c (s) over bar constituent quark model patterns.  
  Address [Albaladejo, Miguel] Univ Murcia, Dept Fis, E-30071 Murcia, Spain, Email: albaladejo@um.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000443822000003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3714  
Permanent link to this record
 

 
Author (up) Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. url  doi
openurl 
  Title Lowest-lying even-parity (B)over-bar(s) mesons: heavy-quark spin-flavor symmetry, chiral dynamics, and constituent quark-model bare masses Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 3 Pages 170 - 9pp  
  Keywords  
  Abstract The discovery of the D*(s0)(2317) and D-s1(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q (q) over bar and (Q (q) over bar)(q (q) over bar) Fock components. In contrast to the c (s) over bar sector, there is no experimental evidence of J(P) = 0(+), 1(+) bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D*(s0)(2317) and D-s1(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave (B) over bar (s) scalar and axial mesons and the (B) over bar (()*()) K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels.  
  Address [Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P. G.] Univ Valencia, Inst Invest Paterna, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, Aptd 22085, Valencia 46071, Spain, Email: ortegapg@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400018400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3076  
Permanent link to this record
 

 
Author (up) Albaladejo, M.; Guo, F.K.; Hidalgo-Duque, C.; Nieves, J.; Pavon Valderrama, M. url  doi
openurl 
  Title Decay widths of the spin-2 partners of the X(3872) Type Journal Article
  Year 2015 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 75 Issue 11 Pages 547 - 26pp  
  Keywords  
  Abstract We consider the X(3872) resonance as a J(PC) = 1(++) D (D) over bar* hadronic molecule. According to heavy quark spin symmetry, there will exist a partner with quantum numbers 2(++), X-2, which would be a D*(D) over bar* loosely bound state. The X-2 is expected to decay dominantly into D (D) over bar, D (D) over bar* and (D) over barD* in d-wave. In this work, we calculate the decay widths of the X-2 resonance into the above channels, as well as those of its bottom partner, X-b2, the mass of which comes from assuming heavy flavor symmetry for the contact terms. We find partial widths of the X-2 and X-b2 of the order of a few MeV. Finally, we also study the radiative X-2 -> D (D) over bar*gamma. and X-b2 -> (B) over bar B*gamma decays. These decay modes are more sensitive to the long-distance structure of the resonances and to the D (D) over bar* or B (B) over bar* final state interaction.  
  Address [Albaladejo, Miguel; Hidalgo-Duque, Carlos; Nieves, Juan] Univ Valencia, Inst Invest Paterna, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, Valencia 46071, Spain, Email: Miguel.Albaladejo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365886000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2487  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva