toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Alfonso, V.I.; Bejarano, C.; Beltran Jimenez, J.; Olmo, G.J.; Orazi, E. url  doi
openurl 
  Title The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields Type Journal Article
  Year 2017 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 34 Issue 23 Pages 235003 - 20pp  
  Keywords modified gravity; metric-affine theories; torsion; non-minimal couplings  
  Abstract We study a large family of metric-affine theories with a projective symmetry, including non-minimally coupled matter fields which respect this invariance. The symmetry is straightforwardly realised by imposing that the connection only enters through the symmetric part of the Ricci tensor, even in the matter sector. We leave the connection completely free (including torsion), and obtain its general solution as the Levi-Civita connection of an auxiliary metric, showing that the torsion only appears as a projective mode. This result justifies the widely used condition of setting vanishing torsion in these theories as a simple gauge choice. We apply our results to some particular cases considered in the literature, including the so-called Eddington-inspired-Born-Infeld theories among others. We finally discuss the possibility of imposing a gauge fixing where the connection is metric compatible, and comment on the genuine character of the non-metricity in theories where the two metrics are not conformally related.  
  Address [Alfonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58109970 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000414726500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3353  
Permanent link to this record
 

 
Author (up) Araujo Filho, A.A. url  doi
openurl 
  Title Analysis of a regular black hole in Verlinde's gravity Type Journal Article
  Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 41 Issue 1 Pages 015003 - 30pp  
  Keywords Verlinde's emergent gravity; dark matter; shadows; black hole  
  Abstract This work focuses on the examination of a regular black hole within Verlinde's emergent gravity, specifically investigating the Hayward-like (modified) solution. The study reveals the existence of three horizons under certain conditions, i.e. an event horizon and two Cauchy horizons. Our results indicate regions which phase transitions occur based on the analysis of heat capacity and Hawking temperature. To compute the latter quantity, we utilize three distinct methods: the surface gravity approach, Hawking radiation, and the application of the first law of thermodynamics. In the case of the latter approach, it is imperative to introduce a correction to ensure the preservation of the Bekenstein-Hawking area law. Geodesic trajectories and critical orbits (photon spheres) are calculated, highlighting the presence of three light rings. Additionally, we investigate the black hole shadows. Furthermore, the quasinormal modes are explored using third- and sixth-order Wentzel-Kramers-Brillouin approximations. In particular, we observe stable and unstable oscillations for certain frequencies. Finally, in order to comprehend the phenomena of time-dependent scattering in this scenario, we provide an investigation of the time-domain solution.  
  Address [Araujo Filho, A. A.] Univ Valencia, Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001114102700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5841  
Permanent link to this record
 

 
Author (up) Araujo Filho, A.A.; Furtado, J.; Reis, J.A.A.S.; Silva, J.E.G. url  doi
openurl 
  Title Thermodynamical properties of an ideal gas in a traversable wormhole Type Journal Article
  Year 2023 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 40 Issue 24 Pages 245001 - 20pp  
  Keywords wormhole; thermodynamic properties; Ellis wormhole  
  Abstract In this work, we analyze the thermodynamic properties of non-interacting particles under influence of the gravitational field of a traversable wormhole. In particular, we investigate how the thermodynamic quantities are affected by the Ellis wormhole geometry, considering three different regions to our study: asymptotically far, close to the throat, and at the throat. The thermodynamic quantities turn out to depend strongly on parameter that controls the wormhole throat radius. By varying it, there exist an expressive modification in the thermodynamic state quantities, exhibiting both usual matter and dark energy-like behaviors. Finally, the interactions are regarded to the energy density and it seems to indicate that it “cures” the dark energy-like features.  
  Address [Araujo Filho, A. A.] Univ Valencia, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001098744300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5792  
Permanent link to this record
 

 
Author (up) Araujo Filho, A.A.; Hassanabadi, H.; Heidari, N.; Kriz, J.; Zare, S. url  doi
openurl 
  Title Gravitational traces of bumblebee gravity in metric-affine formalism Type Journal Article
  Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 41 Issue 5 Pages 055003 - 21pp  
  Keywords bumblebee gravity; metric affine formalism; shadows  
  Abstract This work explores various manifestations of bumblebee gravity within the metric-affine formalism. We investigate the impact of the Lorentz violation parameter, denoted as X, on the modification of the Hawking temperature. Our calculations reveal that as X increases, the values of the Hawking temperature attenuate. To examine the behavior of massless scalar perturbations, specifically the quasinormal modes, we employ the Wentzel-Kramers-Brillouin method. The transmission and reflection coefficients are determined through our calculations. The outcomes indicate that a stronger Lorentz-violating parameter results in slower damping oscillations of gravitational waves. To comprehend the influence of the quasinormal spectrum on time-dependent scattering phenomena, we present a detailed analysis of scalar perturbations in the time-domain solution. Additionally, we conduct an investigation on shadows, revealing that larger values of X correspond to larger shadow radii. Furthermore, we constrain the magnitude of the shadow radii using the EHT horizon-scale image of SgrA* . Finally, we calculate both the time delay and the deflection angle.  
  Address [Araujo Filho, A. A.] Univ Valencia, CSIC, Dept Fis Teor, Ctr MIxto Univ Valencia, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001152994800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5925  
Permanent link to this record
 

 
Author (up) Babichev, E.; Fabbri, A. url  doi
openurl 
  Title Instability of black holes in massive gravity Type Journal Article
  Year 2013 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 30 Issue 15 Pages 152001 - 7pp  
  Keywords  
  Abstract We show that linear perturbations around the simplest black hole solution of massive bi-gravity theories, the bi-Schwarzschild solution, exhibit an unstable mode featuring the Gregory-Laflamme instability of higher dimensional black strings. The result is obtained for the massive gravity theory which is free from the Boulware-Deser ghost, as well as for its extension with two dynamical metrics. These results may indicate that static black holes in massive gravity do not exist. For the graviton mass of the order of the Hubble scale, however, the instability timescale is of order of the Hubble time.  
  Address [Babichev, Eugeny] Univ Paris 11, Lab Phys Theor Orsay, F-91405 Orsay, France, Email: eugeny.babichev@th.u-psud.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321692600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1498  
Permanent link to this record
 

 
Author (up) Bazeia, D.; Losano, L.; Menezes, R.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Robustness of braneworld scenarios against tensorial perturbations Type Journal Article
  Year 2015 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 32 Issue 21 Pages 215011 - 10pp  
  Keywords brane-worlds; tensorial perturbations; metric-affine geometry  
  Abstract Inspired by the peculiarities of the effective geometry of crystalline structures, we reconsider thick brane scenarios from a metric-affine perspective. We show that for a rather general family of theories of gravity, whose Lagrangian is an arbitrary function of the metric and the Ricci tensor, the background and scalar field equations can be written in first-order form, and tensorial perturbations have a non negative definite spectrum, which makes them stable under linear perturbations regardless of the form of the gravity Lagrangian. We find, in particular, that the tensorial zero modes are exactly the same as predicted by Einstein's theory regardless of the scalar field and gravitational Lagrangians.  
  Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051900 Joao Pessoa, Paraiba, Brazil, Email: bazeia@fisica.ufpb.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000364921200014 Approved no  
  Is ISI no International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2459  
Permanent link to this record
 

 
Author (up) Bazeia, D.; Losano, L.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Geodesically complete BTZ-type solutions of 2+1 Born-Infeld gravity Type Journal Article
  Year 2017 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 34 Issue 4 Pages 045006 - 21pp  
  Keywords Born-Infeld gravity; BTZ; wormholes; nonsingular solutions; geodesic completeness  
  Abstract We study Born-Infeld gravity coupled to a static, non-rotating electric field in 2 + 1 dimensions and find exact analytical solutions. Two families of such solutions represent geodesically complete, and hence nonsingular, spacetimes. Another family represents a point-like charge with a singularity at the center. Despite the absence of rotation, these solutions resemble the charged, rotating BTZ solution of general relativity but with a richer structure in terms of horizons. The nonsingular character of the first two families turn out to be attached to the emergence of a wormhole structure on their innermost region. This seems to be a generic prediction of extensions of general relativity formulated in metric-affine (or Palatini) spaces, where metric and connection are regarded as independent degrees of freedom.  
  Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051900 Joao Pessoa, Paraiba, Brazil, Email: bazeia@fisica.ufpb.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000395398800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3013  
Permanent link to this record
 

 
Author (up) Beltran Jimenez, J.; de Andres, D.; Delhom, A. url  doi
openurl 
  Title Anisotropic deformations in a class of projectively-invariant metric-affine theories of gravity Type Journal Article
  Year 2020 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 37 Issue 22 Pages 225013 - 25pp  
  Keywords alternative theories of gravity; metric-affine gravity; anisotropic solutions  
  Abstract Among the general class of metric-affine theories of gravity, there is a special class conformed by those endowed with a projective symmetry. Perhaps the simplest manner to realise this symmetry is by constructing the action in terms of the symmetric part of the Ricci tensor. In these theories, the connection can be solved algebraically in terms of a metric that relates to the spacetime metric by means of the so-called deformation matrix that is given in terms of the matter fields. In most phenomenological applications, this deformation matrix is assumed to inherit the symmetries of the matter sector so that in the presence of an isotropic energy-momentum tensor, it respects isotropy. In this work we discuss this condition and, in particular, we show how the deformation matrix can be anisotropic even in the presence of isotropic sources due to the non-linear nature of the equations. Remarkably, we find that Eddington-inspired-Born-Infeld (EiBI) theories do not admit anisotropic deformations, but more general theories do. However, we find that the anisotropic branches of solutions are generally prone to a pathological physical behaviour.  
  Address [Jimenez, Jose Beltran] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000580878200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4576  
Permanent link to this record
 

 
Author (up) Borja, E.F.; Diaz-Polo, J.; Garay, I.; Livine, E.R. url  doi
openurl 
  Title Dynamics for a 2-vertex quantum gravity model Type Journal Article
  Year 2010 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 27 Issue 23 Pages 235010 - 34pp  
  Keywords  
  Abstract We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N)-invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.  
  Address [Borja, Enrique F.; Garay, Inaki] Univ Erlangen Nurnberg, Inst Theoret Phys 3, D-91058 Erlangen, Germany, Email: etera.livine@ens-lyon.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284211600011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 341  
Permanent link to this record
 

 
Author (up) Borja, E.F.; Freidel, L.; Garay, I.; Livine, E.R. url  doi
openurl 
  Title U(N) tools for loop quantum gravity: the return of the spinor Type Journal Article
  Year 2011 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 28 Issue 5 Pages 055005 - 28pp  
  Keywords  
  Abstract We explore the classical setting for the U(N) framework for SU(2) intertwiners for loop quantum gravity and describe the corresponding phase space in terms of spinors with the appropriate constraints. We show how its quantization leads back to the standard Hilbert space of intertwiner states defined as holomorphic functionals. We then explain how to glue these intertwiners states in order to construct spin network states as wavefunctions on the spinor phase space. In particular, we translate the usual loop gravity holonomy observables to our classical framework. Finally, we propose how to derive our phase space structure from an action principle which induces non-trivial dynamics for the spin network states. We conclude by applying explicitly our framework to states living on the simple 2-vertex graph and discuss the properties of the resulting Hamiltonian.  
  Address [Borja, Enrique F.; Garay, Inaki] Univ Erlangen Nurnberg, Inst Theoret Phys 3, D-91058 Erlangen, Germany, Email: etera.livine@ens-lyon.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287308700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 579  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva