toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Caputo, A.; Sberna, L.; Toubiana, A.; Babak, S.; Barausse, E.; Marsat, S.; Pani, P. url  doi
openurl 
  Title Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart Type Journal Article
  Year 2020 Publication (up) Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 892 Issue 2 Pages 90 - 13pp  
  Keywords  
  Abstract We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i).stellar-origin black-hole binaries.(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave (GW) observatories within weeks/months; and (ii) intermediate-mass black-hole binaries.(IMBHBs) in the LISA band only. Because of the large number of observable GW cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the GW phase at negative (-4) post-Newtonian order, being thus dominant for binaries at large separations. Accretion at the Eddington or at super-Eddington rate will leave a detectable imprint on the dynamics of SOBHBs. For super-Eddington rates and a 10 yr mission, a multiwavelength strategy with LISA and a ground-based interferometer can detect about 10 (a few) SOBHB events for which the accretion rate can be measured at 50% (10%) level. In all cases, the sky position can be identified within much less than 0.4 deg(2) uncertainty. Likewise, accretion at greater than or similar to 100% of the Eddington rate can be measured in IMBHBs up to redshift z approximate to 0.1, and the position of these sources can be identified within less than 0.01 deg(2) uncertainty. Altogether, a detection of SOBHBs or IMBHBs would allow for targeted searches of electromagnetic counterparts to black-hole mergers in gas-rich environments with future X-ray detectors (such as Athena) and/or radio observatories (such as SKA).  
  Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000619108700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4709  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title A Survey of Active Galaxies at TeV Photon Energies with the HAWC Gamma-Ray Observatory Type Journal Article
  Year 2021 Publication (up) Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 907 Issue 2 Pages 67 - 18pp  
  Keywords Active galactic nuclei; Blazars; Gamma-rays; Gamma-ray sources; Sky surveys; Radio galaxies  
  Abstract The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory continuously detects TeV photons and particles within its large field of view, accumulating every day a deeper exposure of two-thirds of the sky. We analyzed 1523 days of HAWC live data acquired over four and a half years, in a follow-up analysis of 138 nearby (z < 0.3) active galactic nuclei from the Third Catalog of Hard Fermi-LAT sources culminating within 40 degrees of the zenith at Sierra Negra, the HAWC site. This search for persistent TeV emission used a maximum-likelihood analysis assuming intrinsic power-law spectra attenuated by pair production of gamma-ray photons with the extragalactic background light. HAWC clearly detects persistent emission from Mkn 421 and Mkn 501, the two brightest blazars in the TeV sky, at 65 sigma and 17 sigma level, respectively. Marginal evidence, just above the 3 sigma level, was found for three other known very high-energy emitters: the radio galaxy M87 and the BL Lac objects VER J0521+211 and 1ES 1215+303, the latter two at z similar to 0.1. We find a 4.2 sigma evidence for collective emission from the set of 30 previously reported very high-energy sources, with Mkn 421 and Mkn 501 excluded. Upper limits are presented for the sample under the power-law assumption and in the predefined (0.5-2.0), (2.0-8.0), and (8.0-32.0) TeV energy intervals.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Kunde, G. J.; Malone, K.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA, Email: alberto@inaoep.mx;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000612927500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4712  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Salesa, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis Type Journal Article
  Year 2021 Publication (up) Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 911 Issue 1 Pages 48 - 11pp  
  Keywords  
  Abstract A search for astrophysical pointlike neutrino sources using the data collected by the ANTARES detector between 2007 January 29 and 2017 December 31 is presented. A likelihood method is used to assess the significance of an excess of muon neutrinos inducing track-like events in correlation with the location of a list of possible sources. Different sets of objects are tested in the analysis: (a) a subsample of the Fermi 3LAC catalog of blazars, (b) a jet-obscured population of active galactic nuclei, (c) a sample of hard X-ray selected radio galaxies, (d) a star-forming galaxy catalog, and (e) a public sample of 56 very-high-energy track events from the IceCube experiment. None of the tested sources shows a significant association with the sample of neutrinos detected by ANTARES. The smallest p-value is obtained for the catalog of radio galaxies with an equal-weights hypothesis, with a pre-trial p-value equivalent to a 2.8 sigma excess, which is equivalent to 1.6 sigma post-trial. In addition, the results of a dedicated analysis for the blazar MG3 J225517+2409 are also reported: this source is found to be the most significant within the Fermi 3LAC sample, with five ANTARES events located less than one degree from the source. This blazar showed evidence of flaring activity in Fermi data, in spacetime coincidence with a high-energy track detected by IceCube. An a posteriori significance of 2.6 sigma for the combination of ANTARES and IceCube data is reported.  
  Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France, Email: julien.aublin@apc.in2p3.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000641563000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4773  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title Probing the Sea of Cosmic Rays by Measuring Gamma-Ray Emission from Passive Giant Molecular Clouds with HAWC Type Journal Article
  Year 2021 Publication (up) Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 914 Issue 2 Pages 106 - 14pp  
  Keywords  
  Abstract The study of high-energy gamma rays from passive giant molecular clouds (GMCs) in our Galaxy is an indirect way to characterize and probe the paradigm of the “sea” of cosmic rays in distant parts of the Galaxy. By using data from the High Altitude Water Cerenkov (HAWC) Observatory, we measure the gamma-ray flux above 1 TeV of a set of these clouds to test the paradigm. We selected high galactic latitude clouds that are in HAWC's field of view and that are within 1 kpc distance from the Sun. We find no significant excess emission in the cloud regions, nor when we perform a stacked log-likelihood analysis of GMCs. Using a Bayesian approach, we calculate 95% credible interval upper limits of the gamma-ray flux and estimate limits on the cosmic-ray energy density of these regions. These are the first limits to constrain gamma-ray emission in the multi-TeV energy range (>1 TeV) using passive high galactic latitude GMCs. Assuming that the main gamma-ray production mechanism is due to proton-proton interaction, the upper limits are consistent with a cosmic-ray flux and energy density similar to that measured at Earth.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: hgayala@psu.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000663912700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4858  
Permanent link to this record
 

 
Author HAWC and HESS Collaborations (Abdalla, H. et al); Salesa Greus, F. url  doi
openurl 
  Title TeV Emission of Galactic Plane Sources with HAWC and HESS Type Journal Article
  Year 2021 Publication (up) Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 917 Issue 1 Pages 6 - 16pp  
  Keywords  
  Abstract The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy gamma-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view, and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both data sets, the point-spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the gamma-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. data set. Remaining differences in the overall gamma-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the gamma-ray sky between WCD and IACT techniques.  
  Address [Abdalla, H.; Backes, M.; Davids, I. D.; Kasai, E.; Shapopi, J. N. S.; Shiningayamwe, K.; Steenkamp, R.; van Rensburg, C.] Univ Namibia, Dept Phys, Private Bag 13301, Windhoek 10005, Namibia, Email: armelle.jardin-blicq@mpi-hd.mpg.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000683127600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4932  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva