|   | 
Details
   web
Records
Author (up) Aguilar, A.C.; Binosi, D.; Ibañez, D.; Papavassiliou, J.
Title Effects of divergent ghost loops on the Green's functions of QCD Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 89 Issue 8 Pages 085008 - 26pp
Keywords
Abstract In the present work, we discuss certain characteristic features encoded in some of the fundamental QCD Green's functions, for which the origin can be traced back to the nonperturbative masslessness of the ghost field, in the Landau gauge. Specifically, the ghost loops that contribute to these Green's functions display infrared divergences, akin to those encountered in the perturbative treatment, in contradistinction to the gluonic loops, for which perturbative divergences are tamed by the dynamical generation of an effective gluon mass. In d = 4, the aforementioned divergences are logarithmic, thus causing a relatively mild impact, whereas in d = 3 they are linear, giving rise to enhanced effects. In the case of the gluon propagator, these effects do not interfere with its finiteness, but make its first derivative diverge at the origin, and introduce a maximum in the region of infrared momenta. The three-gluon vertex is also affected, and the induced divergent behavior is clearly exposed in certain special kinematic configurations, usually considered in lattice simulations; the sign of the corresponding divergence is unambiguously determined. The main underlying concepts are developed in the context of a simple toy model, which demonstrates clearly the interconnected nature of the various effects. The picture that emerges is subsequently corroborated by a detailed nonperturbative analysis, combining lattice results with the dynamical integral equations governing the relevant ingredients, such as the nonperturbative ghost loop and the momentumdependent gluon mass.
Address [Aguilar, A. C.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Sao Paulo, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000334335000020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1769
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Binosi, D.; Ibañez, D.; Papavassiliou, J.
Title New method for determining the quark-gluon vertex Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 6 Pages 065027 - 26pp
Keywords
Abstract We present a novel nonperturbative approach for calculating the form factors of the quark-gluon vertex in terms of an unknown three-point function, in the Landau gauge. The key ingredient of this method is the exact all-order relation connecting the conventional quark-gluon vertex with the corresponding vertex of the background field method, which is Abelian-like. When this latter relation is combined with the standard gauge technique, supplemented by a crucial set of transverse Ward identities, it allows the approximate determination of the nonperturbative behavior of all 12 form factors comprising the quark-gluon vertex, for arbitrary values of the momenta. The actual implementation of this procedure is carried out in the Landau gauge, in order to make contact with the results of lattice simulations performed in this particular gauge. The most demanding technical aspect involves the approximate calculation of the components of the aforementioned (fully dressed) three-point function, using lattice data as input for the gluon propagators appearing in its diagrammatic expansion. The numerical evaluation of the relevant form factors in three special kinematical configurations (soft-gluon and quark symmetric limit, zero quark momentum) is carried out in detail, finding qualitative agreement with the available lattice data. Most notably, a concrete mechanism is proposed for explaining the puzzling divergence of one of these form factors observed in lattice simulations.
Address [Aguilar, A. C.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Sao Paulo, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000342147700012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1932
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Pinto-Gomez, F.; Roberts, C.D.; Rodriguez-Quintero, J.
Title Schwinger mechanism for gluons from lattice QCD Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 841 Issue Pages 137906 - 8pp
Keywords Continuum Schwinger function methods; Emergence of mass; Gluons; Lattice Schwinger function methods; Quantum chromodynamics; Schwinger mechanism of gauge boson mass; generation
Abstract Continuum and lattice analyses have revealed the existence of a mass-scale in the gluon two-point Schwinger function. It has long been conjectured that this expresses the action of a Schwinger mechanism for gauge boson mass generation in quantum chromodynamics (QCD). For such to be true, it is necessary and sufficient that a dynamically-generated, massless, colour-carrying, scalar gluon+gluon correlation emerges as a feature of the dressed three-gluon vertex. Working with results on elementary Schwinger functions obtained via the numerical simulation of lattice-regularised QCD, we establish with an extremely high level of confidence that just such a feature appears; hence, confirm the conjectured origin of the gluon mass scale.
Address [Aguilar, A. C.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, UNICAMP, BR-13083859 Campinas, SP, Brazil, Email: cristina.aguilar@unicamp.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000984221700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5530
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodriguez-Quintero, J.
Title Infrared facets of the three-gluon vertex Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 818 Issue Pages 136352 - 7pp
Keywords QCD; Three-gluon vertex; Lattice QCD; Schwinger-Dyson equations
Abstract We present novel lattice results for the form factors of the quenched three-gluon vertex of QCD, in two special kinematic configurations that depend on a single momentum scale. We consider three form factors, two associated with a classical tensor structure and one without tree-level counterpart, exhibiting markedly different infrared behaviors. Specifically, while the former display the typical suppression driven by a negative logarithmic singularity at the origin, the latter saturates at a small negative constant. These exceptional features are analyzed within the Schwinger-Dyson framework, with the aid of special relations obtained from the Slavnov-Taylor identities of the theory. The emerging picture of the underlying dynamics is thoroughly corroborated by the lattice results, both qualitatively as well as quantitatively.
Address [Aguilar, A. C.; Ferreira, M. N.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, UNICAMP, BR-13083859 Campinas, SP, Brazil, Email: jose.rodriguez@dfaie.uhu.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000662629500036 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4865
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S.
Title Gluon propagator and three-gluon vertex with dynamical quarks Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 2 Pages 154 - 17pp
Keywords
Abstract We present a detailed analysis of the kinetic and mass terms associated with the Landau gauge gluon propagator in the presence of dynamical quarks, and a comprehensive dynamical study of certain special kinematic limits of the three-gluon vertex. Our approach capitalizes on results from recent lattice simulations with (2+1) domain wall fermions, a novel nonlinear treatment of the gluon mass equation, and the nonperturbative reconstruction of the longitudinal three-gluon vertex from its fundamental Slavnov-Taylor identities. Particular emphasis is placed on the persistence of the suppression displayed by certain combinations of the vertex form factors at intermediate and low momenta, already known from numerous pure Yang-Mills studies. One of our central findings is that the inclusion of dynamical quarks moderates the intensity of this phenomenon only mildly, leaving the asymptotic low-momentum behavior unaltered, but displaces the characteristic “zero crossing” deeper into the infrared region. In addition, the effect of the three-gluon vertex is explored at the level of the effective gauge coupling, whose size is considerably reduced with respect to its counterpart obtained from the ghost-gluon vertex. The main upshot of the above considerations is the further confirmation of the tightly interwoven dynamics between the two- and three-point sectors of QCD.
Address [Aguilar, A. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000517203200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4314
Permanent link to this record