toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Fluctuations of anisotropic flow in Pb plus Pb collisions at root s(NN)=5.02 TeV with the ATLAS detector Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 01 Issue 1 Pages 051 - 59pp  
  Keywords Hadron-Hadron scattering (experiments); Heavy-ion collision; Collective flow; Event-by-event fluctuation; Particle correlations and fluctuations  
  Abstract Multi-particle azimuthal cumulants are measured as a function of centrality and transverse momentum using 470 μb(-1) of Pb+Pb collisions at root s(NN) = 5.02TeV with the ATLAS detector at the LHC. These cumulants provide information on the event-by-event fluctuations of harmonic flow coefficients v(n) and correlated fluctuations between two harmonics v(n) and v(m). For the first time, a non-zero four-particle cumulant is observed for dipolar flow, v(1). The four-particle cumulants for elliptic flow, v(2), and triangular flow, v(3), exhibit a strong centrality dependence and change sign in ultra-central collisions. This sign change is consistent with significant non-Gaussian fluctuations in v(2) and v(3). The four-particle cumulant for quadrangular flow, v(4), is found to change sign in mid-central collisions. Correlations between two harmonics are studied with three- and four-particle mixed-harmonic cumulants, which indicate an anti-correlation between v(2) and v(3), and a positive correlation between v(2) and v(4). These correlations decrease in strength towards central collisions and either approach zero or change sign in ultra-central collisions. To investigate the possible flow fluctuations arising from intrinsic centrality or volume fluctuations, the results are compared between two different event classes used for centrality definitions. In peripheral and mid-central collisions where the cumulant signals are large, only small differences are observed. In ultra-central collisions, the differences are much larger and transverse momentum dependent. These results provide new information to disentangle flow fluctuations from the initial and final states, as well as new insights on the influence of centrality fluctuations.  
  Address [Aaboud, M.; Dyckes, G. I.; Jacobs, R. M.; Olsson, M. J. R.; Petridou, C.; Rados, P.; Shatalov, P. B.; White, R.] Univ Adelaide, Dept Phys, Adelaide, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000511969100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4307  
Permanent link to this record
 

 
Author Mertsch, P.; Parimbelli, G.; de Salas, P.F.; Gariazzo, S.; Lesgourgues, J.; Pastor, S. url  doi
openurl 
  Title Neutrino clustering in the Milky Way and beyond Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (up) 01 Issue 1 Pages 015 - 23pp  
  Keywords cosmological neutrinos; galaxy clustering; cosmological simulations  
  Abstract The standard cosmological model predicts the existence of a Cosmic Neutrino Background, which has not yet been observed directly. Some experiments aiming at its detection are currently under development, despite the tiny kinetic energy of the cosmological relic neutrinos, which makes this task incredibly challenging. Since massive neutrinos are attracted by the gravitational potential of our Galaxy, they can cluster locally. Neutrinos should be more abundant at the Earth position than at an average point in the Universe. This fact may enhance the expected event rate in any future experiment. Past calculations of the local neutrino clustering factor only considered a spherical distribution of matter in the Milky Way and neglected the influence of other nearby objects like the Virgo cluster, although recent N-body simulations suggest that the latter may actually be important. In this paper, we adopt a back-tracking technique, well established in the calculation of cosmic rays fluxes, to perform the first three-dimensional calculation of the number density of relic neutrinos at the Solar System, taking into account not only the matter composition of the Milky Way, but also the contribution of the Andromeda galaxy and the Virgo cluster. The effect of Virgo is indeed found to be relevant and to depend non-trivially on the value of the neutrino mass. Our results show that the local neutrino density is enhanced by 0.53% for a neutrino mass of 10 meV, 12% for 50 meV, 50% for 100 meV or 500% for 300 meV.  
  Address [Mertsch, P.; Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol TTK, D-52056 Aachen, Germany, Email: pmertsch@physik.rwth-aachen.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000528025800016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4382  
Permanent link to this record
 

 
Author Stadler, J.; Boehm, C.; Mena, O. url  doi
openurl 
  Title Is it mixed dark matter or neutrino masses? Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (up) 01 Issue 1 Pages 039 - 18pp  
  Keywords cluster counts; cosmological parameters from CMBR; cosmological parameters from LSS; neutrino masses from cosmology  
  Abstract In this paper, we explore a scenario where the dark matter is a mixture of interacting and non interacting species. Assuming dark matter-photon interactions for the interacting species, we find that the suppression of the matter power spectrum in this scenario can mimic that expected in the case of massive neutrinos. Our numerical studies include present limits from Planck Cosmic Microwave Background data, which render the strength of the dark matter photon interaction unconstrained when the fraction of interacting dark matter is small. Despite the large entangling between mixed dark matter and neutrino masses, we show that future measurements from the Dark Energy Instrument (DESI) could help in establishing the dark matter and the neutrino properties simultaneously, provided that the interaction rate is very close to its current limits and the fraction of interacting dark matter is at least of O (10%). However, for that region of parameter space where a small fraction of interacting DM coincides with a comparatively large interaction rate, our analysis highlights a considerable degeneracy between the mixed dark matter parameters and the neutrino mass scale.  
  Address [Stadler, Julia; Boehm, Celine] Univ Durham, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England, Email: jstadler@mpe.mpg.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000528025800040 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4383  
Permanent link to this record
 

 
Author Fileviez Perez, P.; Murgui, C.; Plascencia, A.D. url  doi
openurl 
  Title Axion dark matter, proton decay and unification Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 01 Issue 1 Pages 091 - 18pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; GUT  
  Abstract We discuss the possibility to predict the QCD axion mass in the context of grand unified theories. We investigate the implementation of the DFSZ mechanism in the context of renormalizable SU(5) theories. In the simplest theory, the axion mass can be predicted with good precision in the range m(a) = (2-16) neV, and there is a strong correlation between the predictions for the axion mass and proton decay rates. In this context, we predict an upper bound for the proton decay channels with antineutrinos, tau(p -> K+(nu) over bar) less than or similar to 4 x 10(37) yr and tau(p -> pi(+)(nu) over bar) less than or similar to 2 x 10(36) yr. This theory can be considered as the minimal realistic grand unified theory with the DFSZ mechanism and it can be fully tested by proton decay and axion experiments.  
  Address [Fileviez Perez, Pavel; Plascencia, Alexis D.] Case Western Reserve Univ, Phys Dept, Cleveland, OH 44106 USA, Email: pxf112@case.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000588065200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4605  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Poveda, J.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Measurements of top-quark pair single- and double-differential cross-sections in the all-hadronic channel in pp collisions at root s=13 TeV using the ATLAS detector Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (up) 01 Issue 1 Pages 033 - 76pp  
  Keywords Hadron-Hadron scattering (experiments); Top physics  
  Abstract Differential cross-sections are measured for top-quark pair production in the all-hadronic decay mode, using proton-proton collision events collected by the ATLAS experiment in which all six decay jets are separately resolved. Absolute and normalised single- and double-differential cross-sections are measured at particle and parton level as a function of various kinematic variables. Emphasis is placed on well-measured observables in fully reconstructed final states, as well as on the study of correlations between the top-quark pair system and additional jet radiation identified in the event. The study is performed using data from proton-proton collisions at root s = 13 TeV collected by the ATLAS detector at CERN's Large Hadron Collider in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb(-1). The rapidities of the individual top quarks and of the top-quark pair are well modelled by several independent event generators. Significant mismodelling is observed in the transverse momenta of the leading three jet emissions, while the leading top-quark transverse momentum and top-quark pair transverse momentum are both found to be incompatible with several theoretical predictions.  
  Address [Banerjee, S.; Dang, N. P.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000607134800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4681  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva