|   | 
Details
   web
Records
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P.
Title Measurement of the muon neutrino charged-current cross sections on water, hydrocarbon and iron, and their ratios, with the T2K on-axis detectors Type Journal Article
Year 2019 Publication Progress of Theoretical and Experimental Physics Abbreviated Journal Prog. Theor. Exp. Phys.
Volume (up) Issue 9 Pages 093C02 - 30pp
Keywords
Abstract We report a measurement of the flux-integrated v(mu) charged-current cross sections on water, hydrocarbon, and iron in the T2K on-axis neutrino beam with a mean neutrino energy of 1.5 GeV. The measured cross sections on water, hydrocarbon, and iron are sigma(H2O)(CC) = (0.840 +/- 0.010(stat.)(0.08)(+0.10)(syst.)) x 10 (38) cm(2)/nucleon, sigma(CH)(CC) = (0.817 +/- 0.007(stat.)(0.08)(+0.11)(syst.)) x 10 (38) cm(2)/nucleon, and sigma(Fe)(CC) = (0.859 +/- 0.003(stat.)(0.10)(+0.12)(syst.)) x 10 (38) cm(2)/nucleon, respectively, for a restricted phase space of induced muons: theta(mu) < 45 degrees and p(mu) >0.4 GeV/c in the laboratory frame. The measured cross section ratios are sigma(H2O)(CC)/sigma(CH)(CC) = 1.028 +/- 0.016(stat.) +/- 0.053(syst.), sigma(Fe)(CC)/sigma(H2O)(CC) = 1.023 +/- 0.012(stat.) +/- 0.058(syst.), and sigma(Fe)(CC)/sigma(CH)(CC) = 1.049 +/- 0.010(stat.) +/- 0.043(syst.). These results, with an unprecedented precision for the measurements of neutrino cross sections on water in the studied energy region, show good agreement with the current neutrino interaction models used in the T2K oscillation analyses.
Address [Abe, K.; Bronner, C.; Hayato, Y.; Ikeda, M.; Kameda, J.; Kato, Y.; Miura, M.; Moriyama, S.; Nakajima, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Takeda, A.; Tanaka, H. K.; Yano, T.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Akita, Japan, Email: taichiro@post.kek.jp
Corporate Author Thesis
Publisher Oxford Univ Press Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-3911 ISBN Medium
Area Expedition Conference
Notes WOS:000493049200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4189
Permanent link to this record
 

 
Author Molina, R.; Geng, L.S.; Oset, E.
Title Comments on the dispersion relation method to vector-vector interaction Type Journal Article
Year 2019 Publication Progress of Theoretical and Experimental Physics Abbreviated Journal Prog. Theor. Exp. Phys.
Volume (up) Issue 10 Pages 103B05 - 16pp
Keywords
Abstract We study in detail the method proposed recently to study the vector-vector interaction using the N/D method and dispersion relations, which concludes that, while, for J = 0, one finds bound states, in the case of J = 2, where the interaction is also attractive and much stronger, no bound state is found. In that work, approximations are done for N and D and a subtracted dispersion relation for D is used, with subtractions made up to a polynomial of second degree in s – s(th), matching the expression to 1 – VG at threshold. We study this in detail for the rho rho interaction and to see the convergence of the method we make an extra subtraction matching 1 – VG at threshold up to (s – s(th))(3). We show that the method cannot be used to extrapolate the results down to 1270 MeV where the f(2)(1270) resonance appears, due to the artificial singularity stemming from the “on-shell” factorization of the rho exchange potential. In addition, we explore the same method but folding this interaction with the mass distribution of the rho, and we show that the singularity disappears and the method allows one to extrapolate to low energies, where both the (s – s(th))(2) and (s – s(th))(3) expansions lead to a zero of Re D(s), at about the same energy where a realistic approach produces a bound state. Even then, the method generates a large Im D(s) that we discuss is unphysical.
Address [Molina, R.] Univ Complutense Madrid, Fac Fis, Dept Fis Teor 2, Plaza Ciencias 1, E-28040 Madrid, Spain, Email: ramolinape@gmail.com
Corporate Author Thesis
Publisher Oxford Univ Press Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-3911 ISBN Medium
Area Expedition Conference
Notes WOS:000493500800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4190
Permanent link to this record
 

 
Author Kou, E. et al; Perello, M.; Pich, A.; Vos, M.
Title The Belle II Physics Book Type Journal Article
Year 2019 Publication Progress of Theoretical and Experimental Physics Abbreviated Journal Prog. Theor. Exp. Phys.
Volume (up) Issue 12 Pages 123C01 - 654pp
Keywords
Abstract We present the physics program of the Belle II experiment, located on the intensity frontier SuperKEKB e+e− collider. Belle II collected its first collisions in 2018, and is expected to operate for the next decade. It is anticipated to collect 50/ab of collision data over its lifetime. This book is the outcome of a joint effort of Belle II collaborators and theorists through the Belle II theory interface platform (B2TiP), an effort that commenced in 2014. The aim of B2TiP was to elucidate the potential impacts of the Belle II program, which includes a wide scope of physics topics: B physics, charm, tau, quarkonium, electroweak precision measurements and dark sector searches. It is composed of nine working groups (WGs), which are coordinated by teams of theorist and experimentalists conveners: Semileptonic and leptonic B decays, Radiative and Electroweak penguins, phi1 and phi2 (time-dependent CP violation) measurements, phi_3 measurements, Charmless hadronic B decay, Charm, Quarkonium(like), tau and low-multiplicity processes, new physics and global fit analyses. This book highlights “golden- and silver-channels”, i.e. those that would have the highest potential impact in the field. Theorists scrutinised the role of those measurements and estimated the respective theoretical uncertainties, achievable now as well as prospects for the future. Experimentalists investigated the expected improvements with the large dataset expected from Belle II, taking into account improved performance from the upgraded detector.
Address [Kahlhoefer, F.] Rhein Westfal TH Aachen, RWTH, D-52056 Aachen, Germany, Email: kou@lal.in2p3.fr
Corporate Author Thesis
Publisher Oxford Univ Press Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-3911 ISBN Medium
Area Expedition Conference
Notes WOS:000510154300009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4284
Permanent link to this record
 

 
Author Piriz, G.H.; Gonzalez-Sprinberg, G.A.; Ballester, F.; Vijande, J.
Title Dosimetry of Large Field Valencia applicators for Cobalt-60-based brachytherapy Type Journal Article
Year 2024 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume (up) Issue Pages 5pp
Keywords dosimetry; Monte Carlo; skin brachytherapy; Valencia applicators
Abstract BackgroundNon-melanoma skin cancer is one of the most common types of cancer and one of the main approaches is brachytherapy. For small lesions, the treatment of this cancer with brachytherapy can be done with two commercial applicators, one of these is the Large Field Valencia Applicators (LFVA).PurposeThe aim of this study is to test the capabilities of the LFVA to use clinically 60Co sources instead of the 192Ir ones. This study was designed for the same dwell positions and weights for both sources.MethodsThe Penelope Monte Carlo code was used to evaluate dose distribution in a water phantom when a 60Co source is considered. The LFVA design and the optimized dwell weights reported for the case of 192Ir are maintained with the only exception of the dwell weight of the central position, that was increased. 2D dose distributions, field flatness, symmetry and the leakage dose distribution around the applicator were calculated.ResultsWhen comparing the dose distributions of both sources, field flatness and symmetry remain unchanged. The only evident difference is an increase of the penumbra regions for all depths when using the 60Co source. Regarding leakage, the maximum dose within the air volume surrounding the applicator is in the order of 20% of the prescription dose for the 60Co source, but it decreases to less than 5% at about 1 cm distance.ConclusionsFlatness and symmetry remains unaltered as compared with 192Ir sources, while an increase in leakage has been observed. This proves the feasibility of using the LFVA in a larger range of clinical applications.
Address [Piriz, Gustavo H.; Gonzalez-Sprinberg, Gabriel A.] Univ Republica, Fac Sci, Med Phys Unit, Montevideo, Uruguay, Email: ghpiriz@gmail.com
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:001187737100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6011
Permanent link to this record
 

 
Author D'Auria, G. et al; Gonzalez-Iglesias, D.; Gimeno, B.; Pereira, D.E.
Title The CompactLight Design Study Type Journal Article
Year 2024 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.
Volume (up) Issue Pages 1-208
Keywords
Abstract CompactLight is a Design Study funded by the European Union under the Horizon 2020 research and innovation funding programme, with Grant Agreement No. 777431. CompactLight was conducted by an International Collaboration of 23 international laboratories and academic institutions, three private companies, and five third parties. The project, which started in January 2018 with a duration of 48 months, aimed to design an innovative, compact, and cost-effective hard X-ray FEL facility complemented by a soft X-ray source to pave the road for future compact accelerator-based facilities. The result is an accelerator that can be operated at up to 1 kHz pulse repetition rate, beyond today's state of the art, using the latest concepts for high brightness electron photoinjectors, very high gradient accelerating structures in X-band, and novel short-period undulators. In this report, we summarize the main deliverable of the project: the CompactLight Conceptual Design Report, which overviews the current status of the design and addresses the main technological challenges.
Address [D'Auria, G.; Danailov, M.; Mitri, S. Di; Ferianis, M.; Gioppo, R.; Rochow, R.; Tabacco, C.; Zangrando, M.] Elettra Sincrotrone Trieste SCpA, AREA Sci Pk, I-34149 Trieste, Italy, Email: gerardo.dauria@elettra.eu
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1951-6355 ISBN Medium
Area Expedition Conference
Notes WOS:001198683900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6122
Permanent link to this record