toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Yamamoto, H. doi  openurl
  Title The International Linear Collider Project-Its Physics and Status Type Journal Article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 4 Pages 674 - 15pp  
  Keywords Higgs particle; elementary particles; standard theory; linear collider; dark matter; top quark  
  Abstract The discovery of Higgs particle has ushered in a new era of particle physics. Even though the list of members of the standard theory of particle physics is now complete, the shortcomings of the theory became ever more acute. It is generally considered that the best solution to the problems is an electron-positron collider that can study Higgs particle with high precision and high sensitivity; namely, a Higgs factory. Among a few candidates for Higgs factory, the International Linear Collider (ILC) is currently the most advanced in its program. In this article, we review the physics and the project status of the ILC including its energy expandability.  
  Address [Yamamoto, Hitoshi] Tohoku Univ, Grad Sch Sci, Sendai, Miyagi 9800812, Japan, Email: yhitoshi@epx.phys.tohoku.ac.jp  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000643622400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4797  
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Zornoza, J.D.; Manzaneda, M.; Gozzini, R.; Ricolfe-Viala, C.; Lajara, R.; Albiol, F. doi  openurl
  Title Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection Type Journal Article
  Year 2024 Publication Sensors Abbreviated Journal Sensors  
  Volume 24 Issue 7 Pages 2084 - 12pp  
  Keywords time-to-digital converters; neutrino telescopes; silicon photomultipliers; dark noise rate filtering  
  Abstract Silicon Photomultipliers find applications across various fields. One potential Silicon Photomultiplier application domain is neutrino telescopes, where they may enhance the angular resolution. However, the elevated dark count rate associated with Silicon Photomultipliers represents a significant challenge to their widespread utilization. To address this issue, it is proposed to use Silicon Photomultipliers and Photomultiplier Tubes together. The Photomultiplier Tube signals serve as a trigger to mitigate the dark count rate, thereby preventing undue saturation of the available bandwidth. This paper presents an investigation into a fast and resource-efficient method for filtering the Silicon Photomultiplier dark count rate. A low-resource and fast coincident filter has been developed, which removes the Silicon Photomultiplier dark count rate by using as a trigger the Photomultiplier Tube input signals. The architecture of the coincidence filter, together with the first results obtained, which validate the effectiveness of this method, is presented.  
  Address [Real, Diego; Calvo, David; Zornoza, Juan de Dios; Manzaneda, Mario; Gozzini, Rebecca; Albiol, Francisco] CSIC Univ Valencia, IFIC Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001201226600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6063  
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Diaz, A.; Salesa Greus, F.; Sanchez Losa, A. doi  openurl
  Title A Narrow Optical Pulse Emitter Based on LED: NOPELED Type Journal Article
  Year 2022 Publication Sensors Abbreviated Journal Sensors  
  Volume 22 Issue 19 Pages 7683 - 15pp  
  Keywords short optical pulse; optical instrumentation  
  Abstract Light sources emitting short pulses are needed in many particle physics experiments using optical sensors as they can replicate the light produced by the particles being detected and are also an important calibration and test element. This work presents NOPELED, a light source based on LEDs emitting short optical pulses with typical rise times of less than 3 ns and Full Width at Half Maximum lower than 7 ns. The emission wavelength depends on the model of LED used. Several LED models have been characterized in the range from 405 to 532 nm, although NOPELED can work with LED emitting wavelengths outside of that region. While the wavelength is fixed for a given LED model, the intensity and the frequency of the optical pulse can be controlled. NOPELED, which also has low cost and simple operation, can be operated remotely, making it appropriate for either different physics experiments needing in-place light sources such as astrophysical neutrino detectors using photo-multipliers or positron emission tomography devices using scintillation counters, or, beyond physics, applications needing short pulses of light such as protein fluorescence or chemodetection of heavy metals.  
  Address [Real, Diego; Calvo, David; Salesa Greus, Francisco; Sanchez Losa, Agustin] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000867935300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5381  
Permanent link to this record
 

 
Author Esteve, R.; Toledo, J.F.; Herrero, V.; Simon, A.; Monrabal, F.; Alvarez, V.; Rodriguez, J.; Querol, M.; Ballester, F. doi  openurl
  Title The Event Detection System in the NEXT-White Detector Type Journal Article
  Year 2021 Publication Sensors Abbreviated Journal Sensors  
  Volume 21 Issue 2 Pages 673 - 18pp  
  Keywords xenon TPC; trigger concepts; data acquisition circuits; FPGA  
  Abstract This article describes the event detection system of the NEXT-White detector, a 5 kg high pressure xenon TPC with electroluminescent amplification, located in the Laboratorio Subterraneo de Canfranc (LSC), Spain. The detector is based on a plane of photomultipliers (PMTs) for energy measurements and a silicon photomultiplier (SiPM) tracking plane for offline topological event filtering. The event detection system, based on the SRS-ATCA data acquisition system developed in the framework of the CERN RD51 collaboration, has been designed to detect multiple events based on online PMT signal energy measurements and a coincidence-detection algorithm. Implemented on FPGA, the system has been successfully running and evolving during NEXT-White operation. The event detection system brings some relevant and new functionalities in the field. A distributed double event processor has been implemented to detect simultaneously two different types of events thus allowing simultaneous calibration and physics runs. This special feature provides constant monitoring of the detector conditions, being especially relevant to the lifetime and geometrical map computations which are needed to correct high-energy physics events. Other features, like primary scintillation event rejection, or a double buffer associated with the type of event being searched, help reduce the unnecessary data throughput thus minimizing dead time and improving trigger efficiency.  
  Address [Esteve Bosch, Raul; Toledo Alarcon, Jose F.; Herrero Bosch, Vicente; Alvarez Puerta, Vicente; Rodriguez Samaniego, Javier; Ballester Merelo, Francisco] Univ Politecn Valencia, CSIC, Inst Instrumentac Imagen Mol I3M, Ctr Mixto, Camino Vera S-N, Valencia 46022, Spain, Email: rauesbos@eln.upv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000611719600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4693  
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Zornoza, J.D.; Manzaneda, M. doi  openurl
  Title White Rabbit Expansion Board: Design, Architecture, and Signal Integrity Simulations Type Journal Article
  Year 2023 Publication Electronics Abbreviated Journal Electronics  
  Volume 12 Issue 16 Pages 3394 - 16pp  
  Keywords subnanosecond synchronization; White Rabbit; IEEE Std 1588-2019; virtual prototyping  
  Abstract The White Rabbit protocol allows synchronization and communication via an optical link in an integrated, modular, and scalable manner. It provides a solution to those applications that have very demanding requirements in terms of synchronization. Field-programmable gate arrays are used to implement the protocol; additionally, special hardware is needed to provide the necessary clock signals used by the dual-mixer time difference for precise phase measurement. In the present work, an expansion board that allows for White Rabbit functionality is presented. The expansion board contains the oscillators required by the White Rabbit protocol, one running at 125 MHz and another at 124.922 MHZ. The architecture of this board includes two oscillator systems for tests and comparison. One is based on VCOs and another on crystal oscillators running at the desired frequencies. In addition, it incorporates a temperature sensor, from where the medium access control address is extracted, an electrically erasable programmable read-only memory, a pulse-per-second output, and a USB UART to access the White Rabbit IP core at the field-programmable gate array. Finally, to ensure the quality of the layout design and guarantee the level of synchronization desired, the results of the power and signal integrity simulations are also presented.  
  Address [Real, Diego; Calvo, David; de Dios Zornoza, Juan; Manzaneda, Mario] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001056236300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5628  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva