toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Batail, L.; Davesne, D.; Peru, S.; Becker, P.; Pastore, A.; Navarro, J. url  doi
openurl 
  Title (up) A three-ranged Gogny interaction in touch with pion exchange: promising results to improve infinite matter properties Type Journal Article
  Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 59 Issue 7 Pages 173 - 11pp  
  Keywords  
  Abstract We suggest a new Gogny-type finite-range effective interaction including a third Gaussian in the central term. Based on simple arguments valid for an arbitrary radial form factor, the three ranges are obtained in connection with physical grounds, relating them to one-boson exchange interactions. Moreover, some parameters of the longest range are fixed through the G-matrix elements of the One Pion Exchange Potential. On top of giving a fairly good description of atomic nuclei properties comparable with other existing parametrisations, the resulting interaction leads to a remarkable improvement of some infinite matter properties that are relevant for astrophysical calculations.  
  Address [Batail, L.] Univ Libre Bruxelles, Inst Astron & Astrophys, CP 226,Blvd Triomphe, B-1050 Brussels, Belgium, Email: lysandra.batail@ulb.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001037384800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5592  
Permanent link to this record
 

 
Author Oliver-Canamas, L.; Vijande, J.; Candela-Juan, C.; Gimeno-Olmos, J.; Pujades-Claumarchirant, M.C.; Rovira-Escutia, J.J.; Ballester, F.; Perez-Calatayud, J. doi  openurl
  Title (up) A User-Friendly System for Mailed Dosimetric Audits of Ir-192 or Co-60 HDR Brachytherapy Sources Type Journal Article
  Year 2023 Publication Cancers Abbreviated Journal Cancers  
  Volume 15 Issue 9 Pages 2484 - 14pp  
  Keywords high dose rate brachytherapy; dosimetric audit; error detection; phantom  
  Abstract Nowadays, the options available to perform external dosimetric audits of the high dose rate (HDR) brachytherapy treatment process are limited. In this work, we present a methodology that allows for performing dosimetric audits in this field. A phantom was designed and manufactured for this purpose. The criteria for its design, together with the in-house measurements for its characterization, are presented. The result is a user-friendly system that can be mailed to perform dosimetric audits in HDR brachytherapy on-site for systems using either Iridium-192 (Ir-192) or Cobalt-60 (Co-60) sources. Objectives: The main goal of this work is to design and characterize a user-friendly methodology to perform mailed dosimetric audits in high dose rate (HDR) brachytherapy for systems using either Iridium-192 (Ir-192) or Cobalt-60 (Co-60) sources. Methods: A solid phantom was designed and manufactured with four catheters and a central slot to place one dosimeter. Irradiations with an Elekta MicroSelectron V2 for Ir-192, and with a BEBIG Multisource for Co-60 were performed for its characterization. For the dose measurements, nanoDots, a type of optically stimulated luminescent dosimeters (OSLDs), were characterized. Monte Carlo (MC) simulations were performed to evaluate the scatter conditions of the irradiation set-up and to study differences in the photon spectra of different Ir-192 sources (Microselectron V2, Flexisource, BEBIG Ir2.A85-2 and Varisource VS2000) reaching the dosimeter in the irradiation set-up. Results: MC simulations indicate that the surface material on which the phantom is supported during the irradiations does not affect the absorbed dose in the nanoDot. Generally, differences below 5% were found in the photon spectra reaching the detector when comparing the Microselectron V2, the Flexisource and the BEBIG models. However, differences up to 20% are observed between the V2 and the Varisource VS2000 models. The calibration coefficients and the uncertainty in the dose measurement were evaluated. Conclusions: The system described here is able to perform dosimetric audits in HDR brachytherapy for systems using either Ir-192 or Co-60 sources. No significant differences are observed between the photon spectra reaching the detector for the MicroSelectron V2, the Flexisource and the BEBIG Ir-192 sources. For the Varisource VS2000, a higher uncertainty is considered in the dose measurement to allow for the nanoDot response.  
  Address [Oliver-Canamas, Laura] Serv Radiofis & Proteccio Radiol, Consorci Hospitalari Prov Castello CHPC, Castellon de La Plana 12002, Spain, Email: laura.oliver.canas@gmail.com  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000987247100001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5542  
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsou, S.T. url  doi
openurl 
  Title (up) A vacuum transition in the FSM with a possible new take on the horizon problem in cosmology Type Journal Article
  Year 2023 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 38 Issue 25 Pages 2350124 - 32pp  
  Keywords Framed standard model; phase transition; early Universe; cosmology  
  Abstract The framed standard model (FSM), constructed to explain the empirical mass and mixing patterns (including CP phases) of quarks and leptons, in which it has done quite well, gives otherwise the same result as the standard model (SM) in almost all areas in particle physics where the SM has been successfully applied, except for a few specified deviations such as the W mass and the g-2 of muons, that is, just where experiment is showing departures from what SM predicts. It predicts further the existence of a hidden sector of particles some of which may function as dark matter. In this paper, we first note that the above results involve, surprisingly, the FSM undergoing a vacuum transition (VTR1) at a scale of around 17MeV, where the vacuum expectation values of the colour framons (framed vectors promoted into fields) which are all nonzero above that scale acquire some vanishing components below it. This implies that the metric pertaining to these vanishing components would vanish also. Important consequences should then ensue, but these occur mostly in the unknown hidden sector where empirical confirmation is hard at present to come by, but they give small reflections in the standard sector, some of which may have already been seen. However, one notes that if, going off at a tangent, one imagines colour to be embedded, Kaluza-Klein (KK) fashion, into a higher-dimensional space-time, then this VTR1 would cause 2 of the compactified dimensions to collapse. This might mean then that when the universe cooled to the corresponding temperature of 1011 K when it was about 10-3 s old, this VTR1 collapse would cause the three spatial dimensions of the universe to expand to compensate. The resultant expansion is estimated, using FSM parameters previously determined from particle physics, to be capable, when extrapolated backwards in time, of bringing the present universe back inside the then horizon, solving thus formally the horizon problem. Besides, VTR1 being a global phenomenon in the FSM, it would switch on and off automatically and simultaneously over all space, thus requiring seemingly no additional strategy for a graceful exit. However, this scenario has not been checked for consistency with other properties of the universe and is to be taken thus not as a candidate solution of the horizon problem but only as an observation from particle physics which might be of interest to cosmologists and experts in the early universe. For particle physicists also, it might serve as an indicator for how relevant this VTR1 can be, even if the KK assumption is not made.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001099552500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5803  
Permanent link to this record
 

 
Author Bayar, M.; Debastiani, V.R. url  doi
openurl 
  Title (up) a(0)(980) – f(0)(980) mixing in chi(c1) -> pi(0)f(0)(980) -> pi(0)pi(+)pi(-) and chi(c1) -> pi(0) a(0)(980) -> pi(0)pi(0)eta Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 775 Issue Pages 94-99  
  Keywords Isospin-breaking; a(0)(980) – f(0)(980) mixing; Charmonium decays; Scalar meson states  
  Abstract We study the isospin breaking in the reactions chi(c1) -> pi(0)pi(+)pi(-) and chi(c1) -> pi(0)pi(0)eta and its relation to the a(0)(980) – f(0)(980) mixing, which was measured by the BESIII Collaboration. We show that the same theoretical model previously developed to study the chi(c1) -> eta pi(+)pi(-) reaction (also measured by BESIII), and further explored in the predictions to the eta(c) -> eta pi(+)pi(-), can be successfully employed in the present study. We assume that the chi(c1) behaves as an SU(3) singlet to find the weight in which trios of pseudoscalars are created, followed by the final state interaction of pairs of mesons to describe how the a(0)(980) and f(0)(980) are dynamically generated, using the chiral unitary approach in coupled channels. The isospin violation is introduced through the use of different masses for the charged and neutral kaons, either in the propagators of pairs of mesons created in the chi(c1) decay, or in the propagators inside the T matrix, constructed through the unitarization of the scattering and transition amplitudes of pairs of pseudoscalar mesons. We find that violating isospin inside the T matrix makes the pi(0)eta -> pi(+)pi(-) amplitude nonzero, which gives an important contribution and also enhances the effect of the K (K) over bar term. We also find that the most important effect in the total amplitude is the isospin breaking inside the T matrix, due to the constructive sum of pi(0)eta -> pi(+)pi(-) and K (K) over bar -> pi(+)pi(-), which is essential to get a good agreement with the experimental measurement of the mixing.  
  Address [Bayar, M.] Kocaeli Univ, Dept Phys, TR-41380 Izmir, Turkey, Email: melahat.bayar@kocaeli.edu.tr;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000417190700014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3432  
Permanent link to this record
 

 
Author Breso-Pla, V.; Falkowski, A.; Gonzalez-Alonso, M. url  doi
openurl 
  Title (up) A(FB) in the SMEFT: precision Z physics at the LHC Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 021 - 27pp  
  Keywords Beyond Standard Model; Effective Field Theories  
  Abstract We study the forward-backward asymmetry A(FB) in pp -> l(+)l(-) at the Z peak within the Standard Model Effective Field Theory (SMEFT). We find that this observable provides per mille level constraints on the vertex corrections of the Z boson to quarks, which close a flat direction in the electroweak precision SMEFT fit. Moreover, we show that current A(FB) data is precise enough so that its inclusion in the fit improves significantly LEP bounds even in simple New Physics setups. This demonstrates that the LHC can compete with and complement LEP when it comes to precision measurements of the Z boson properties.  
  Address [Breso-Pla, Victor; Gonzalez-Alonso, Martin] Univ Valencia, Dept Fis Teor, IFIC, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: vicbreso@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000683833600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4935  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva