|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I.; Zhuo, J.
Title Test of lepton flavor universality using B0→D*−τ+ντ decays with hadronic τ channels Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue Pages 012018 - 18pp
Keywords
Abstract The branching fraction B(B0→D*−τ+ντ) is measured relative to that of the normalization mode B0→D*−π+π−π+ using hadronic τ+→π+π−π+(π0)¯ντ decays in proton-proton collision data at a center-of-mass energy of 13 TeV collected by the LHCb experiment, corresponding to an integrated luminosity of 2  fb−1. The measured ratio is B(B0→D*−τ+ντ)/B(B0→D*−π+π−π+)=1.70±0.10+0.11−0.10, where the first uncertainty is statistical and the second is related to systematic effects. Using established branching fractions for the B0→D*−π+π−π+ and B0→D*−μ+νμ modes, the lepton universality test R(D*−)≡B(B0→D*−τ+ντ)/B(B0→D*−μ+νμ) is calculated, R(D*−)=0.247±0.015±0.015±0.012, where the third uncertainty is due to the uncertainties on the external branching fractions. This result is consistent with the Standard Model prediction and with previous measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6088
Permanent link to this record
 

 
Author Albaladejo, M.; Nieves, J.; Ruiz Arriola, E.
Title Femtoscopic signatures of the lightest S-wave scalar open-charm mesons Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue Pages 014020 - 7pp
Keywords
Abstract We predict femtoscopy correlation functions for S-wave D(s)ϕ pairs of lightest pseudoscalar open-charm mesons and Goldstone bosons from next-to-leading-order unitarized heavy-meson chiral perturbation theory amplitudes. The effect of the two-state structure around 2300 MeV can be clearly seen in the (S,I)=(0,1/2) Dπ, Dη, and Ds¯K correlation functions, while in the scalar-strange (1,0) sector, the D∗s0(2317)± state lying below the DK threshold produces a depletion of the correlation function near threshold. These exotic states owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D(s). The predicted correlation functions could be experimentally measured and will shed light into the hadron spectrum, confirming that it should be viewed as more than a collection of quark model states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6089
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I.
Title First observation of the B+→D+sD−sK+ decay Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue Pages 034012 - 14pp
Keywords
Abstract The B+→D+sD−sK+ decay is observed for the first time using proton-proton collision data collected by the LHCb detector at center-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9  fb−1. Its branching fraction relative to that of the B+→D+D−K+ decay is measured to be B(B+→D+sD−sK+)B(B+→D+D−K+)=0.525±0.033±0.027±0.034, where the first uncertainty is statistical, the second systematic, and the third is due to the uncertainties on the branching fractions of the D±s→K∓K±π± and D±→K∓π±π± decays. This measurement fills an experimental gap in the knowledge of the family of Cabibbo-favored ¯b→¯cc¯s transitions and opens the path for unique studies of spectroscopy in future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6090
Permanent link to this record
 

 
Author Pich, A.; Solomonidi, E.; Vale Silva, L.
Title Final-state interactions in the CP asymmetries of charm-meson two-body decays Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue Pages 036026 - 25pp
Keywords
Abstract Urgent theoretical progress is needed in order to provide an estimate in the Standard Model of the recent measurement by LHCb of direct CP violation in charm-meson two-body decays. Rescattering effects must be taken into account for a meaningful theoretical description of the amplitudes involved in such category of observables, as signaled by the presence of large strong phases. We discuss the computation of the latter effects based on a two-channel coupled dispersion relation, which exploits isospin-zero phase shifts and inelasticity parametrizations of data coming from the rescattering processes ππ→ππ, πK→πK, and ππ→K¯K. The determination of the subtraction constants of the dispersive integrals relies on the leading contributions to the transition amplitudes from the 1/NC counting, where NC is the number of QCD colors. Furthermore, we use the measured values of the branching ratios to help in selecting the nonperturbative inputs in the isospin limit, from which we predict values for the CP asymmetries. We find that the predicted level of CP violation is much below the experimental value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6091
Permanent link to this record
 

 
Author Sanchis-Gual, N.; del Rio, A.
Title Precessing binary black holes as engines of electromagnetic helicity Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue Pages 044052 - 11pp
Keywords
Abstract We show that binary black hole mergers with precessing evolution can potentially excite photons from the quantum vacuum in such a way that total helicity is not preserved in the process. Helicity violation is allowed by quantum fluctuations that spoil the electric-magnetic duality symmetry of the classical Maxwell theory without charges. We show here that precessing binary black hole systems in astrophysics generate a flux of circularly polarized gravitational waves which, in turn, provides the required helical background that triggers this quantum effect. Solving the fully nonlinear Einstein’s equations with numerical relativity we explore the parameter space of binary systems and extract the detailed dependence of the quantum effect with the spins of the two black holes. We also introduce a set of diagrammatic techniques that allows us to predict when a binary black hole merger can or cannot emit circularly polarized gravitational radiation, based on mirror-symmetry considerations. This framework allows to understand and to interpret correctly the numerical results, and to predict the outcomes in potentially interesting astrophysical systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6092
Permanent link to this record