toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bodenstein, S.; Bordes, J.; Dominguez, C.A.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title Charm-quark mass from weighted finite energy QCD sum rules Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 11 Pages 114013 - 5pp  
  Keywords  
  Abstract The running charm-quark mass in the scheme is determined from weighted finite energy QCD sum rules involving the vector current correlator. Only the short distance expansion of this correlator is used, together with integration kernels (weights) involving positive powers of s, the squared energy. The optimal kernels are found to be a simple pinched kernel and polynomials of the Legendre type. The former kernel reduces potential duality violations near the real axis in the complex s plane, and the latter allows us to extend the analysis to energy regions beyond the end point of the data. These kernels, together with the high energy expansion of the correlator, weigh the experimental and theoretical information differently from e. g. inverse moments finite energy sum rules. Current, state of the art results for the vector correlator up to four-loop order in perturbative QCD are used in the finite energy sum rules, together with the latest experimental data. The integration in the complex s plane is performed using three different methods: fixed order perturbation theory, contour improved perturbation theory, and a fixed renormalization scale mu. The final result is (m) over bar (c)(3 GeV) = 1008 +/- 26 MeV, in a wide region of stability against changes in the integration radius s(0) in the complex s plane.  
  Address [Bodenstein, S.; Dominguez, C. A.] Univ Cape Town, Ctr Theoret & Math Phys, ZA-7700 Rondebosch, South Africa  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium (up)  
  Area Expedition Conference  
  Notes ISI:000286567000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 527  
Permanent link to this record
 

 
Author Andricek, L. et al; Lacasta, C.; Marinas, C.; Vos, M. doi  openurl
  Title Intrinsic resolutions of DEPFET detector prototypes measured at beam tests Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 638 Issue 1 Pages 24-32  
  Keywords Silicon pixel detector; Detector resolution; Spatial resolution; DEPFET; Beam test  
  Abstract The paper is based on the data of the 2009 DEPFET beam test at CERN SPS. The beam test used beams of pions and electrons with energies between 40 and 120 GeV, and the sensors tested were prototypes with thickness of 450 μm and pixel pitch between 20 and 32 μm. Intrinsic resolutions of the detectors are calculated by disentangling the contributions of measurement errors and multiple scattering in tracking residuals. Properties of the intrinsic resolution estimates and factors that influence them are discussed. For the DEPFET detectors in the beam test, the calculation yields intrinsic resolutions of approximate to 1 μm, with a typical accuracy of 0.1 μm. Bias scan, angle scan, and energy scan are used as example studies to show that the intrinsic resolutions are a useful tool in studies of detector properties. With sufficiently precise telescopes, detailed resolution maps can be constructed and used to study and optimize detector performance.  
  Address [Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Malina, L.; Scheirich, J.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague, Czech Republic, Email: peter.kodys@mff.cuni.cz  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium (up)  
  Area Expedition Conference  
  Notes ISI:000290082600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 618  
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Performance of the front-end electronics of the ANTARES neutrino telescope Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 622 Issue 1 Pages 59-73  
  Keywords Neutrino telescope; Photomultiplier tube; Front-end electronics; ASIC  
  Abstract ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip: results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated.  
  Address [Aguilar, J. A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC, CSIC, Valencia 46071, Spain, Email: s.loucatos@cea.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium (up)  
  Area Expedition Conference  
  Notes ISI:000282530300009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 363  
Permanent link to this record
 

 
Author Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Identification of dark matter particles with LHC and direct detection data Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 5 Pages 055008 - 7pp  
  Keywords  
  Abstract Dark matter (DM) is currently searched for with a variety of detection strategies. Accelerator searches are particularly promising, but even if weakly interacting massive particles are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the DM in the Universe Omega(DM). We show that a significantly better reconstruction of the DM properties can be obtained with a combined analysis of LHC and direct detection data, by making a simple Ansatz on the weakly interacting massive particles local density rho(0)((chi) over bar1), i.e., by assuming that the local density scales with the cosmological relic abundance, (rho(0)((chi) over bar1)/rho(DM)) = (Omega(0)((chi) over bar1)/Omega(DM)). We demonstrate this method in an explicit example in the context of a 24-parameter supersymmetric model, with a neutralino lightest supersymmetric particle in the stau coannihilation region. Our results show that future ton-scale direct detection experiments will allow to break degeneracies in the supersymmetric parameter space and achieve a significantly better reconstruction of the neutralino composition and its relic density than with LHC data alone.  
  Address [Bertone, G.] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium (up)  
  Area Expedition Conference  
  Notes ISI:000281741400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 380  
Permanent link to this record
 

 
Author de Vega, I.; Bañuls, M.C.; Perez, A. url  doi
openurl 
  Title Effects of dissipation on an adiabatic quantum search algorithm Type Journal Article
  Year 2010 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 12 Issue Pages 123010 - 19pp  
  Keywords  
  Abstract According to recent studies (Amin et al 2008 Phys. Rev. Lett. 100 060503), the effect of a thermal bath may improve the performance of a quantum adiabatic search algorithm. In this paper, we compare the effects of such a thermal environment on the algorithm performance with those of a structured environment similar to the one encountered in systems coupled to an electromagnetic field that exists within a photonic crystal. Whereas for all the parameter regimes explored here, the algorithm performance is worsened by contact with a thermal environment, the picture appears to be different when one considers a structured environment. In this case we show that by tuning the environment parameters to certain regimes, the algorithm performance can actually be improved with respect to the closed system case. Additionally, the relevance of considering the dissipation rates as complex quantities is discussed in both cases. More specifically, we find that the imaginary part of the rates cannot be neglected with the usual argument that it simply amounts to an energy shift and in fact influences crucially the system dynamics.  
  Address [de Vega, Ines] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany, Email: ines.devega@uni-ulm.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium (up)  
  Area Expedition Conference  
  Notes ISI:000285582800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 303  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva