toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hinarejos, M.; Perez, A.; Bañuls, M.C. url  doi
openurl 
  Title Wigner function for a particle in an infinite lattice Type Journal Article
  Year 2012 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 14 Issue Pages 103009 - 19pp  
  Keywords (up)  
  Abstract We study the Wigner function for a quantum system with a discrete, infinite-dimensional Hilbert space, such as a spinless particle moving on a one-dimensional infinite lattice. We discuss the peculiarities of this scenario and of the associated phase-space construction, propose a meaningful definition of the Wigner function in this case and characterize the set of pure states for which it is non-negative. We propose a measure of non-classicality for states in this system, which is consistent with the continuum limit. The prescriptions introduced here are illustrated by applying them to localized and Gaussian states and to their superpositions.  
  Address [Banuls, M. C.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany, Email: mari.banuls@mpq.mpg.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309396700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1180  
Permanent link to this record
 

 
Author Binosi, D.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title All-order equation of the effective gluon mass Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 8 Pages 085033 - 21pp  
  Keywords (up)  
  Abstract We present the general derivation of the full nonperturbative equation that governs the momentum evolution of the dynamically generated gluon mass, in the Landau gauge. The entire construction hinges crucially on the inclusion of longitudinally coupled vertices containing massless poles of nonperturbative origin, which preserve the form of the fundamental Slavnov-Taylor identities of the theory. The mass equation is obtained from a previously unexplored version of the Schwinger-Dyson equation for the gluon propagator, particular to the pinch technique-background field method formalism, which involves a reduced number of two-loop dressed diagrams, thus simplifying the calculational task considerably. The two-loop contributions turn out to be of paramount importance, modifying the qualitative features of the full mass equation and enabling the emergence of physically meaningful solutions. Specifically, the resulting homogeneous integral equation is solved numerically, subject to certain approximations, for the entire range of physical momenta, yielding positive-definite and monotonically decreasing gluon masses.  
  Address [Binosi, D.] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, Trento, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309999700007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1196  
Permanent link to this record
 

 
Author Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title Gluon mass generation in the massless bound-state formalism Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 3 Pages 034008 - 25pp  
  Keywords (up)  
  Abstract We present a detailed, all-order study of gluon mass generation within the massless bound-state formalism, which constitutes the general framework for the systematic implementation of the Schwinger mechanism in non-Abelian gauge theories. The main ingredient of this formalism is the dynamical formation of bound states with vanishing mass, which give rise to effective vertices containing massless poles; these latter vertices, in turn, trigger the Schwinger mechanism, and allow for the gauge-invariant generation of an effective gluon mass. This particular approach has the conceptual advantage of relating the gluon mass directly to quantities that are intrinsic to the bound-state formation itself, such as the “transition amplitude'' and the corresponding ”bound-state wave function.'' As a result, the dynamical evolution of the gluon mass is largely determined by a Bethe-Salpeter equation that controls the dynamics of the relevant wave function, rather than the Schwinger-Dyson equation of the gluon propagator, as happens in the standard treatment. The precise structure and field-theoretic properties of the transition amplitude are scrutinized in a variety of independent ways. In particular, a parallel study within the linear-covariant (Landau) gauge and the background-field method reveals that a powerful identity, known to be valid at the level of conventional Green's functions, also relates the background and quantum transition amplitudes. Despite the differences in the ingredients and terminology employed, the massless bound-state formalism is absolutely equivalent to the standard approach based on Schwinger-Dyson equations. In fact, a set of powerful relations allows one to demonstrate the exact coincidence of the integral equations governing the momentum evolution of the gluon mass in both frameworks.  
  Address [Ibanez, D.] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314684900003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1327  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions at root s=7 TeV Type Journal Article
  Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 718 Issue 3 Pages 879-901  
  Keywords (up)  
  Abstract A search for the electroweak pair production of charged sleptons and weak gauginos decaying into final states with two leptons is performed using 4.7 fb(-1) of proton-proton collision data at root s = 7 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excesses are observed with respect to the prediction from Standard Model processes. In the scenario of direct slepton production, if the sleptons decay directly into the lightest neutralino, left-handed slepton masses between 85 and 195 GeV are excluded at 95% confidence level for a 20 GeV neutralino. Chargino masses between 110 and 340 GeV are excluded in the scenario of direct production of wino-like chargino pairs decaying into the lightest neutralino via an intermediate on-shell charged slepton for a 10 GeV neutralino. The results are also interpreted in the framework of the phenomenological minimal supersymmetric Standard Model.  
  Address [Jackson, P.; Sonil, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314259500016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1340  
Permanent link to this record
 

 
Author Binosi, D.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title QCD effective charge from the three-gluon vertex of the background-field method Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 12 Pages 125026 - 10pp  
  Keywords (up)  
  Abstract In this article we study in detail the prospects of determining the infrared finite QCD effective charge from a special kinematic limit of the vertex function corresponding to three background gluons. This particular Green's function satisfies a QED-like Ward identity, relating it to the gluon propagator, with no reference to the ghost sector. Consequently, its longitudinal form factors may be expressed entirely in terms of the corresponding gluon wave function, whose inverse is proportional to the effective charge. After reviewing certain important theoretical properties, we consider a typical lattice quantity involving this vertex, and derive its exact dependence on the various form factors, for arbitrary momenta. We then focus on the particular momentum configuration that eliminates any dependence on the (unknown) transverse form factors, projecting out only the desired quantity. A preliminary numerical analysis indicates that the effective charge is relatively insensitive to the numerical uncertainties that may afflict future simulations of the aforementioned lattice quantity. The numerical difficulties associated with a parallel determination of the dynamical gluon mass are briefly discussed.  
  Address [Binosi, D.] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, Trento, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320609200011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1490  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva