toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fioresi, R.; Lledo, M.A.; Razzaq, J. url  doi
openurl 
  Title N=2 quantum chiral superfields and quantum super bundles Type Journal Article
  Year 2022 Publication Journal of Physics A Abbreviated Journal J. Phys. A  
  Volume 55 Issue 38 Pages 384012 - 19pp  
  Keywords (down) supergeometry; supersymmetry; quantum groups; noncommutative geometry; Minkowski space  
  Abstract We give the superalgebra of N = 2 chiral (and antichiral) quantum superfields realized as a subalgebra of the quantum supergroup SL q (4|2). The multiplication law in the quantum supergroup induces a coaction on the set of chiral superfields. We also realize the quantum deformation of the chiral Minkowski superspace as a quantum principal bundle.  
  Address [Fioresi, R.] Univ Bologna, Fabit, Via San Donato 15, I-40126 Bologna, Italy, Email: rita.fioresi@unibo.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-8113 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000849946700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5351  
Permanent link to this record
 

 
Author Lledo, M.A. url  doi
openurl 
  Title Superfields, Nilpotent Superfields and Superschemes dagger Type Journal Article
  Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 12 Issue 6 Pages 1024 - 32pp  
  Keywords (down) supergeometry; superfields; quantum field theory  
  Abstract We interpret superfields in a functorial formalism that explains the properties that are assumed for them in the physical applications. We study the non-trivial relation of scalar superfields with the defining sheaf of the supermanifold of super spacetime. We also investigate in the present work some constraints that are imposed on the superfields, which allow for non-trivial solutions. They give rise to superschemes that, generically, are not regular, that is they do not define a standard supermanifold.  
  Address [Antonia Lledo, Maria] Univ Valencia, Dept Fis Teor, C Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: maria.lledo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000550827300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4468  
Permanent link to this record
 

 
Author Linowski, T.; Schlichtholz, K.; Sorelli, G.; Gessner, M.; Walschaers, M.; Treps, N.; Rudnicki, L. url  doi
openurl 
  Title Application range of crosstalk-affected spatial demultiplexing for resolving separations between unbalanced sources Type Journal Article
  Year 2023 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 25 Issue 10 Pages 103050 - 13pp  
  Keywords (down) super resolution; spatial demultiplexing; crosstalk; unbalanced sources; Fisher information; measurement precision  
  Abstract Super resolution is one of the key issues at the crossroads of contemporary quantum optics and metrology. Recently, it was shown that for an idealized case of two balanced sources, spatial mode demultiplexing (SPADE) achieves resolution better than direct imaging even in the presence of measurement crosstalk (Gessner et al 2020 Phys. Rev. Lett. 125 100501). In this work, we consider arbitrarily unbalanced sources and provide a systematic analysis of the impact of crosstalk on the resolution obtained from SPADE. As we dissect, in this generalized scenario, SPADE's effectiveness depends non-trivially on the strength of crosstalk, relative brightness and the separation between the sources. In particular, for any source imbalance, SPADE performs worse than ideal direct imaging in the asymptotic limit of vanishing source separations. Nonetheless, for realistic values of crosstalk strength, SPADE is still the superior method for several orders of magnitude of source separations.  
  Address [Linowski, Tomasz; Schlichtholz, Konrad; Rudnicki, Lukasz] Univ Gdansk, Int Ctr Theory Quantum Technol, PL-80308 Gdansk, Poland, Email: t.linowski95@gmail.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001119385500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5844  
Permanent link to this record
 

 
Author Bordes, J.; Dominguez, C.A.; Moodley, P.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title Corrections to the SU(3) x SU(3) Gell-Mann-Oakes-Renner relation and chiral couplings L-8(r) and H-r(2) Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 102 - 11pp  
  Keywords (down) Sum Rules; QCD  
  Abstract Next to leading order corrections to the SU(3) x SU(3) Gell-Mann-OakesRenner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the FESR are used to suppress the contribution of the kaon radial excitations to the hadronic spectral function, one with local and the other with global constraints. The result for the pseudoscalar current correlator at zero momentum is psi(5)(0) = (2.8 +/- 0.3) x 10(-3) GeV4, leading to the chiral corrections to GMOR: delta(K) = (55 +/- 5)%. The resulting uncertainties are mostly due to variations in the upper limit of integration in the FESR, within the stability regions, and to a much lesser extent due to the uncertainties in the strong coupling and the strange quark mass. Higher order quark mass corrections, vacuum condensates, and the hadronic resonance sector play a negligible role in this determination. These results confirm an independent determination from chiral perturbation theory giving also very large corrections, i.e. roughly an order of magnitude larger than the corresponding corrections in chiral SU(2) x SU(2). Combining these results with our previous determination of the corrections to GMOR in chiral SU(2) x SU(2), delta(pi), we are able to determine two low energy constants of chiral perturbation theory, i.e. L-8(r) = (1.0 +/- 0.3) x 10(-3), and H-2(r) = -(4.7 +/- 0.6) x 10(-3), both at the scale of the rho-meson mass.  
  Address [Bordes, J.; Penarrocha, J.] Univ Valencia, Dept Fis Teor, Valencia, Spain, Email: Jose.M.Bordes@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310851600031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1257  
Permanent link to this record
 

 
Author Baker, M.J.; Bordes, J.; Dominguez, C.A.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title B meson decay constants f(Bc), f(Bs) and f(B) from QCD sum rules Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 032 - 16pp  
  Keywords (down) Sum Rules; QCD  
  Abstract Finite energy QCD sum rules with Legendre polynomial integration kernels are used to determine the heavy meson decay constant f(Bc), and revisit f(B) and f(Bs). Results exhibit excellent stability in a wide range of values of the integration radius in the complex squared energy plane, and of the order of the Legendre polynomial. Results are f(Bc) = 528 +/- 19 MeV, f(B) = 186 +/- 14 MeV, and f(Bs) = 222 +/- 12 MeV.  
  Address [Baker, M. J.; Bordes, J.; Penarrocha, J.] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: baker.michael.james@googlemail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339422800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1846  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva