toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fougeres, C. et al; Domingo-Pardo, C. url  doi
openurl 
  Title Search for Na-22 in novae supported by a novel method for measuring femtosecond nuclear lifetimes Type Journal Article
  Year 2023 Publication Nature Communications Abbreviated Journal Nat. Commun.  
  Volume 14 Issue 1 Pages 4536 - 7pp  
  Keywords  
  Abstract Classical novae are thermonuclear explosions in stellar binary systems, and important sources of Al-26 and Na-22. While ? rays from the decay of the former radioisotope have been observed throughout the Galaxy, Na-22 remains untraceable. Its half-life (2.6 yr) would allow the observation of its 1.275 MeV ?-ray line from a cosmic source. However, the prediction of such an observation requires good knowledge of its nucleosynthesis. The Na-22(p, ?)Mg-23 reaction remains the only source of large uncertainty about the amount of Na-22 ejected. Its rate is dominated by a single resonance on the short-lived state at 7785.0(7) keV in Mg-23. Here, we propose a combined analysis of particle-particle correlations and velocity-difference profiles to measure femtosecond nuclear lifetimes. The application of this method to the study of the Mg-23 states, places strong limits on the amount of Na-22 produced in novae and constrains its detectability with future space-borne observatories. The authors report a particle-particle correlation and velocity-difference profile method to measure nuclear lifetime. The results obtained for excited states of 23Mg are used to constrain the production of 22Na in the astrophysical novae explosions.  
  Address [Fougeres, Chloe; Santos, Francois de Oliveira; Michelagnoli, Caterina; Clement, Emmanuel; Kim, Yung Hee; Lemasson, Antoine; Boulay, Florent; Goupil, Johan; Li, Hongjie; Navin, Alahari; Ralet, Damien; Saillant, Frederic] Grand Accelerateur Natl Ions Lourds GANIL, CEA, IN2P3, DRF CNRS, Caen, France, Email: chloe.fougeres@gmail.com;  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001063751200012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5671  
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J. doi  openurl
  Title Hartree-Fock Calculations in Semi-Infinite Matter with Gogny Interactions Type Journal Article
  Year 2023 Publication Universe Abbreviated Journal Universe  
  Volume 9 Issue 9 Pages 398 - 11pp  
  Keywords Nuclear Density Functional Theory; semi-infinite nuclear matter; Hartree-Fock equations; 21.60.Jz; 21.65.-f; 21.65.Mn  
  Abstract Hartree-Fock equations in semi-infinite nuclear matter for finite range Gogny interactions are presented together with a detailed numerical scheme to solve them. The value of the surface energy is then extracted and given for standard Gogny interactions.  
  Address [Davesne, Dany] Univ Lyon 1, Inst Phys Infinis Lyon 2, CNRS, IN2P3, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001074530100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5693  
Permanent link to this record
 

 
Author Fernandez Casani, A.; Garcia Montoro, C.; Gonzalez de la Hoz, S.; Salt, J.; Sanchez, J.; Villaplana Perez, M. doi  openurl
  Title Big Data Analytics for the ATLAS EventIndex Project with Apache Spark Type Journal Article
  Year 2023 Publication Computational and Mathematical Methods Abbreviated Journal Comput. Math. Methods  
  Volume 2023 Issue Pages 6900908 - 19pp  
  Keywords  
  Abstract The ATLAS EventIndex was designed to provide a global event catalogue and limited event-level metadata for ATLAS experiment of the Large Hadron Collider (LHC) and their analysis groups and users during Run 2 (2015-2018) and has been running in production since. The LHC Run 3, started in 2022, has seen increased data-taking and simulation production rates, with which the current infrastructure would still cope but may be stretched to its limits by the end of Run 3. A new core storage service is being developed in HBase/Phoenix, and there is work in progress to provide at least the same functionality as the current one for increased data ingestion and search rates and with increasing volumes of stored data. In addition, new tools are being developed for solving the needed access cases within the new storage. This paper describes a new tool using Spark and implemented in Scala for accessing the big data quantities of the EventIndex project stored in HBase/Phoenix. With this tool, we can offer data discovery capabilities at different granularities, providing Spark Dataframes that can be used or refined within the same framework. Data analytic cases of the EventIndex project are implemented, like the search for duplicates of events from the same or different datasets. An algorithm and implementation for the calculation of overlap matrices of events across different datasets are presented. Our approach can be used by other higher-level tools and users, to ease access to the data in a performant and standard way using Spark abstractions. The provided tools decouple data access from the actual data schema, which makes it convenient to hide complexity and possible changes on the backed storage.  
  Address [Casani, Alvaro Fernandez; Montoro, Carlos Garcia; de la Hoz, Santiago Gonzalez; Salt, Jose; Sanchez, Javier; Perez, Miguel Villaplana] CSIC UV, Inst Corpuscular Phys IFIC, E-46980 Paterna, Spain, Email: alvaro.fernandez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Wiley-Hindawi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001079548500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5706  
Permanent link to this record
 

 
Author Conde, D.; Castillo, F.L.; Escobar, C.; García, C.; Garcia Navarro, J.E.; Sanz, V.; Zaldívar, B.; Curto, J.J.; Marsal, S.; Torta, J.M. doi  openurl
  Title Forecasting Geomagnetic Storm Disturbances and Their Uncertainties Using Deep Learning Type Journal Article
  Year 2023 Publication Space Weather Abbreviated Journal Space Weather  
  Volume 21 Issue 11 Pages e2023SW003474 - 27pp  
  Keywords geomagnetic storms; deep learning; forecasting; SYM-H; uncertainties; hyper-parameter optimization  
  Abstract Severe space weather produced by disturbed conditions on the Sun results in harmful effects both for humans in space and in high-latitude flights, and for technological systems such as spacecraft or communications. Also, geomagnetically induced currents (GICs) flowing on long ground-based conductors, such as power networks, potentially threaten critical infrastructures on Earth. The first step in developing an alarm system against GICs is to forecast them. This is a challenging task given the highly non-linear dependencies of the response of the magnetosphere to these perturbations. In the last few years, modern machine-learning models have shown to be very good at predicting magnetic activity indices. However, such complex models are on the one hand difficult to tune, and on the other hand they are known to bring along potentially large prediction uncertainties which are generally difficult to estimate. In this work we aim at predicting the SYM-H index characterizing geomagnetic storms multiple-hour ahead, using public interplanetary magnetic field (IMF) data from the Sun-Earth L1 Lagrange point and SYM-H data. We implement a type of machine-learning model called long short-term memory (LSTM) network. Our scope is to estimate the prediction uncertainties coming from a deep-learning model in the context of forecasting the SYM-H index. These uncertainties will be essential to set reliable alarm thresholds. The resulting uncertainties turn out to be sizable at the critical stages of the geomagnetic storms. Our methodology includes as well an efficient optimization of important hyper-parameters of the LSTM network and robustness tests.  
  Address [Conde, D.; Escobar, C.; Garcia, C.; Garcia, J. E.; Sanz, V.; Zaldivar, B.] Univ Valencia, CSIC, Ctr Mixto, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Daniel.Conde@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Geophysical Union Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001104189700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5804  
Permanent link to this record
 

 
Author Van Isacker, P.; Algora, A.; Vitéz-Sveiczer, A.; Kiss, G.G.; Orrigo, S.E.A.; Rubio, B.; Aguilera, P. doi  openurl
  Title Gamow-Teller Beta Decay and Pseudo-SU(4) Symmetry Type Journal Article
  Year 2023 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 15 Issue 11 Pages 2001 - 15pp  
  Keywords Gamow-Teller beta decay; pseudo-SU(4) symmetry; odd-odd N = Z nuclei  
  Abstract We report on recent experimental results on beta decay into self-conjugate ( N = Z) nuclei with mass number 58 <= A <= 70. Super-allowed b decays from the J(pi) = 0(+) ground state of a Z = N + 2 parent nucleus are to the isobaric analogue state through so-called Fermi transitions and to J(pi) = 1(+) states by way of Gamow-Teller (GT) transitions. The operator of the latter decay is a generator of Wigner's SU(4) algebra and as a consequence GT transitions obey selection rules associated with this symmetry. Since SU(4) is progressively broken with increasing A, mainly as a consequence of the spinorbit interaction, this symmetry is not relevant for the nuclei considered here. We argue, however, that the pseudo-spin-orbit splitting can be small in nuclei with 58 <= A <= 70, in which case nuclear states exhibit an approximate pseudo-SU(4) symmetry. To test this conjecture, GT decay strength is calculated with use of a schematic Hamiltonian with pseudo-SU(4) symmetry. Some generic features of the GT beta decay due to pseudo-SU(4) symmetry are pointed out. The experimentally observed GT strength indicates a restoration of pseudo-SU(4) symmetry for A = 70.  
  Address [Van Isacker, Piet] CEA, DRF, Grand Accelerateur Natl Ions Lourds GANIL, CNRS,IN2P3, Blvd Henri Becquerel, F-14076 Caen, France, Email: isacker@ganil.fr;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001114520800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5843  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva