|   | 
Details
   web
Records
Author Izadi, A.; Shacker, S.S.; Olmo, G.J.; Banerjee, R.
Title Observational effects of varying speed of light in quadratic gravity cosmological models Type Journal Article
Year 2018 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.
Volume 15 Issue 5 Pages (down) 1850084 - 16pp
Keywords Palatini formalism; modified gravity; causal structure constant; varying speed of light
Abstract We study different manifestations of the speed of light in theories of gravity where metric and connection are regarded as independent fields. We find that for a generic gravity theory in a frame with locally vanishing affine connection, the usual degeneracy between different manifestations of the speed of light is broken. In particular, the space-time causal structure constant (c(ST)) may become variable in that local frame. For theories of the form f(R, R-mu nu R-mu nu), this variation in c(ST) has an impact on the definition of the luminosity distance (and distance modulus), which can be used to confront the predictions of particular models against Supernovae type Ia (SN Ia) data. We carry out this test for a quadratic gravity model without cosmological constant assuming (i) a constant speed of light and (ii) a varying speed of light (VSL), and find that the latter scenario is favored by the data.
Address [Izadi, Azam] Khajeh Nasir Toosi Univ Technol, Dept Phys, Tehran, Iran, Email: aizadi@kntu.ac.ir;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0219-8878 ISBN Medium
Area Expedition Conference
Notes WOS:000429106400016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3553
Permanent link to this record
 

 
Author Chun, E.J.; Cvetic, G.; Dev, P.S.B.; Drewes, M.; Fong, C.S.; Garbrecht, B.; Hambye, T.; Harz, J.; Hernandez, P.; Kim, C.S.; Molinaro, E.; Nardi, E.; Racker, J.; Rius, N.; Zamora-Saa, J.
Title Probing leptogenesis Type Journal Article
Year 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 33 Issue 5-6 Pages (down) 1842005 - 99pp
Keywords Neutrino interactions; nonstandard-model neutrinos; right-handed neutrinos; extensions of electroweak gauge sector; supersymmetric models
Abstract The focus of this paper lies on the possible experimental tests of leptogenesis scenarios. We consider both leptogenesis generated from oscillations, as well as leptogenesis from out-of-equilibrium decays. As the Akhmedov-Rubakov-Smirnov (ARS) mechanism allows for heavy neutrinos in the GeV range, this opens up a plethora of possible experimental tests, e.g. at neutrino oscillation experiments, neutrinoless double beta decay, and direct searches for neutral heavy leptons at future facilities. In contrast, testing leptogenesis from out-of-equilibrium decays is a quite difficult task. We comment on the necessary conditions for having successful leptogenesis at the TeV-scale. We further discuss possible realizations and their model specific testability in extended seesaw models, models with extended gauge sectors, and supersymmetric leptogenesis. Not being able to test high-scale leptogenesis directly, we present a way to falsify such scenarios by focusing on their washout processes. This is discussed specifically for the left-right symmetric model and the observation of a heavy W-R, as well as model independently when measuring Delta L = 2 washout processes at the LHC or neutrinoless double beta decay.
Address [Chun, E. J.] Korea Inst Adv Study, Seoul 02455, South Korea, Email: jharz@lpthe.jussieu.fr
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000426586100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3507
Permanent link to this record
 

 
Author Drewes, M.; Garbrecht, B.; Hernandez, P.; Kekic, M.; Lopez-Pavon, J.; Racker, J.; Rius, N.; Salvado, J.; Teresi, D.
Title ARS leptogenesis Type Journal Article
Year 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 33 Issue 5-6 Pages (down) 1842002 - 46pp
Keywords
Abstract We review the current status of the leptogenesis scenario originally proposed by Akhmedov, Rubakov and Smirnov (ARS). It takes place in the parametric regime where the right-handed neutrinos are at the electroweak scale or below and the CP-violating effects are induced by the coherent superposition of different right-handed mass eigenstates. Two main theoretical approaches to derive quantum kinetic equations, the Hamiltonian time evolution as well as the Closed-Time-Path technique are presented, and we discuss their relations. For scenarios with two right-handed neutrinos, we chart the viable parameter space. Both, a Bayesian analysis, that determines the most likely configurations for viable leptogenesis given different variants of flat priors, and a determination of the maximally allowed mixing between the light, mostly left-handed, and heavy, mostly right-handed, neutrino states are discussed. Rephasing invariants are shown to be a useful tool to classify and to understand various distinct contributions to ARS leptogenesis that can dominate in different parametric regimes. While these analyses are carried out for the parametric regime where initial asymmetries are generated predominantly from lepton-number conserving, but flavor violating effects, we also review the contributions from lepton-number violating operators and identify the regions of parameter space where these are relevant.
Address [Drewes, M.; Garbrecht, B.] Tech Univ Munich, Phys Dept, James Franck Str, D-85748 Garching, Germany, Email: m.pilar.hernandez@uv.es
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000426586100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3508
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S.
Title Generation patterns, modified gamma – Z mixing, and hidden sector with dark matter candidates as framed standard model results Type Journal Article
Year 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 33 Issue 36 Pages (down) 1830034 - 23pp
Keywords
Abstract A descriptive summary is given of the results to-date from the framed standard model (FSM) which: Assigns geometric meaning to the Higgs field and to fermion generations, hence offering an explanation for the observed mass and mixing patterns of quarks and leptons, reproducing near-quantitatively 17 of SM parameters with only 7. Predicts a new vector boson G which mixes with gamma and Z, leading to deviations from the SM mixing scheme. For m(G) > 1 TeV, these deviations are within present experimental errors but should soon be detectable at LHC when experimental accuracy is further improved. Suggests the existence of a hidden sector of particles as yet unknown to experiment which interact but little with the known particles. The lowest members of the hidden sector of mass around 17 MeV, being electrically neutral and stable, may figure as dark matter constituents. The idea is to retrace the steps leading to the above results unencumbered by details already worked out and reported elsewhere. This has helped to clarify the logic, tighten some arguments and dispense with one major assumption previously thought necessary, thus strengthening earlier results in opening up possibly a new and exciting vista for further exploration.
Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000455944700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3884
Permanent link to this record
 

 
Author Donini, A.; Enguita-Vileta, V.; Esser, F.; Sanz, V.
Title Generalising Holographic Superconductors Type Journal Article
Year 2022 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.
Volume 2022 Issue Pages (down) 1785050 - 19pp
Keywords
Abstract In this paper we propose a generalised holographic framework to describe superconductors. We first unify the description of s-, p-, and d-wave superconductors in a way that can be easily promoted to higher spin. Using a semianalytical procedure to compute the superconductor properties, we are able to further generalise the geometric description of the hologram beyond the AdS-Schwarzschild Black Hole paradigm and propose a set of higher-dimensional metrics which exhibit the same universal behaviour. We then apply this generalised description to study the properties of the condensate and the scaling of the critical temperature with the parameters of the higher-dimensional theory, which allows us to reproduce existing results in the literature and extend them to include a possible description of the newly observed f-wave superconducting systems.
Address [Donini, Andrea; Esser, Fabian] Univ Valencia CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: donini@ific.uv.es;
Corporate Author Thesis
Publisher Hindawi Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-7357 ISBN Medium
Area Expedition Conference
Notes WOS:000817216300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5277
Permanent link to this record