toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author DEPFET collaboration (Alonso, O. et al); Boronat, M.; Esperante-Pereira, D.; Fuster, J.; Garcia, I.G.; Lacasta, C.; Oyanguren, A.; Ruiz, P.; Timon, G.; Vos, M. url  doi
openurl 
  Title DEPFET Active Pixel Detectors for a Future Linear e(+)e(-) Collider Type Journal Article
  Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 60 Issue 2 Pages 1457-1465  
  Keywords Active pixel sensor; DEPFET; linear collider; vertex detector  
  Abstract The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 μm. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling, and services. In this paper, the status of the DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear e(+)e(-) collider.  
  Address [Alonso, O.; Casanova, R.; Dieguez, A.] Univ Barcelona, E-08028 Barcelona, Spain, Email: marcel.vos@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320856800029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 1489  
Permanent link to this record
 

 
Author Binosi, D.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title QCD effective charge from the three-gluon vertex of the background-field method Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 12 Pages 125026 - 10pp  
  Keywords  
  Abstract In this article we study in detail the prospects of determining the infrared finite QCD effective charge from a special kinematic limit of the vertex function corresponding to three background gluons. This particular Green's function satisfies a QED-like Ward identity, relating it to the gluon propagator, with no reference to the ghost sector. Consequently, its longitudinal form factors may be expressed entirely in terms of the corresponding gluon wave function, whose inverse is proportional to the effective charge. After reviewing certain important theoretical properties, we consider a typical lattice quantity involving this vertex, and derive its exact dependence on the various form factors, for arbitrary momenta. We then focus on the particular momentum configuration that eliminates any dependence on the (unknown) transverse form factors, projecting out only the desired quantity. A preliminary numerical analysis indicates that the effective charge is relatively insensitive to the numerical uncertainties that may afflict future simulations of the aforementioned lattice quantity. The numerical difficulties associated with a parallel determination of the dynamical gluon mass are briefly discussed.  
  Address [Binosi, D.] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, Trento, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320609200011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 1490  
Permanent link to this record
 

 
Author ANTARES Collaboration (Tamburini, C. et al); Aguilar, J.A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. doi  openurl
  Title Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface Type Journal Article
  Year 2013 Publication Plos One Abbreviated Journal PLoS One  
  Volume 8 Issue 7 Pages e67523 - 10pp  
  Keywords  
  Abstract The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.  
  Address [Tamburini, Christian; Lefevre, Dominique; Martini, Verine; Robert, Anne; Dekeyser, Ivan; Fuda, Jean-Luc] Aix Marseille Univ, CNRS INSU, IRD, MIO,U110, Marseille, France, Email: christian.tamburini@univ-amu.fr;  
  Corporate Author Thesis  
  Publisher Public Library Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321765300012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 1496  
Permanent link to this record
 

 
Author Ghosh, P.; Lopez-Fogliani, D.E.; Mitsou, V.A.; Muñoz, C.; Ruiz de Austri, R. url  doi
openurl 
  Title Probing the mu-from-nu supersymmetric standard model with displaced multileptons from the decay of a Higgs boson at the LHC Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 88 Issue 1 Pages 015009 - 6pp  
  Keywords  
  Abstract The "mu from nu'' supersymmetric standard model (mu nu SSM) cures the μproblem and concurrently reproduces measured neutrino data by using a set of usual right-handed neutrino superfields. Recently, the LHC has revealed the first scalar boson which naturally makes it tempting to test μnu SSM in the light of this new discovery. We show that this new scalar, while decaying to a pair of unstable long-lived neutralinos, can lead to a distinct signal with nonprompt multileptons. With concomitant collider analysis we show that this signal provides an intriguing signature of the model, pronounced with light neutralinos. Evidence of this signal is well envisaged with sophisticated displaced vertex analysis, which deserves experimental attention.  
  Address [Ghosh, Pradipta; Munoz, Carlos] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: pradipta.ghosh@uam.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321671700008 Approved no  
  Is ISI yes International Collaboration  
  Call Number (down) IFIC @ pastor @ Serial 1505  
Permanent link to this record
 

 
Author Aguilar, A.C.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title Ghost propagator and ghost-gluon vertex from Schwinger-Dyson equations Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 11 Pages 114020 - 14pp  
  Keywords  
  Abstract We study an approximate version of the Schwinger-Dyson equation that controls the nonperturbative behavior of the ghost-gluon vertex in the Landau gauge. In particular, we focus on the form factor that enters in the dynamical equation for the ghost dressing function, in the same gauge, and derive its integral equation, in the “one-loop dressed” approximation. We consider two special kinematic configurations, which simplify the momentum dependence of the unknown quantity; in particular, we study the soft gluon case and the well-known Taylor limit. When coupled with the Schwinger-Dyson equation of the ghost dressing function, the contribution of this form factor provides considerable support to the relevant integral kernel. As a consequence, the solution of this coupled system of integral equations furnishes a ghost dressing function that reproduces the standard lattice results rather accurately, without the need to artificially increase the value of the gauge coupling.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, BR-13083859 Sao Paulo, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321001100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 1508  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva