|   | 
Details
   web
Records
Author (up) Aguilar, A.C.; Ferreira, M.N.; Ibañez, D.; Oliveira, B.M.; Papavassiliou, J.
Title Patterns of gauge symmetry in the background field method Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 1 Pages 86 - 20pp
Keywords
Abstract The correlation functions of Yang-Mills theories formulated in the background field method satisfy linear Slavnov-Taylor identities, which are naive generalizations of simple tree level relations, with no deformations originating from the ghost-sector of the theory. In recent years, a stronger version of these identities has been found to hold at the level of the background gluon self-energy, whose transversality is enforced separately for each special block of diagrams contributing to the gluon Schwinger-Dyson equation. In the present work we demonstrate by means of explicit calculations that the same distinct realization of the Slavnov-Taylor identity persists in the case of the background three-gluon vertex. The analysis is carried out at the level of the exact Schwinger-Dyson equation for this vertex, with no truncations or simplifying assumptions. The demonstration entails the contraction of individual vertex diagrams by the relevant momentum, which activates Slavnov-Taylor identities of vertices and multi-particle kernels nested inside these graphs; the final result emerges by virtue of a multitude of extensive cancellations, without the need of performing explicit integrations. In addition, we point out that background Ward identities amount to replacing derivatives of propagators by zero-momentum background-gluon insertions, in exact analogy to standard properties of Abelian gauge theories. Finally, certain potential applications of these results are briefly discussed.
Address [Aguilar, A. C.; Oliveira, B. M.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000923274000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5481
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Ferreira, M.N.; Ibañez, D.; Papavassiliou, J.
Title Schwinger displacement of the quark-gluon vertex Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 10 Pages 967 - 22pp
Keywords
Abstract The action of the Schwinger mechanism in pure Yang-Mills theories endows gluons with an effective mass, and, at the same time, induces a measurable displacement to the Ward identity satisfied by the three-gluon vertex. In the present work we turn to Quantum Chromodynamics with two light quark flavors, and explore the appearance of this characteristic displacement at the level of the quark-gluon vertex. When the Schwinger mechanism is activated, this vertex acquires massless poles, whose momentum-dependent residues are determined by a set of coupled integral equations. The main effect of these residues is to displace the Ward identity obeyed by the pole-free part of the vertex, causing modifications to its form factors, and especially the one associated with the tree-level tensor. The comparison between the available lattice data for this form factor and the Ward identity prediction reveals a marked deviation, which is completely compatible with the theoretical expectation for the attendant residue. This analysis corroborates further the self-consistency of this mass-generating scenario in the general context of real-world strong interactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6080
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Ferreira, M.N.; Oliveira, B.M.; Papavassiliou, J.
Title Schwinger-Dyson truncations in the all-soft limit: a case study Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 11 Pages 1068 - 15pp
Keywords
Abstract We study a special Schwinger-Dyson equation in the context of a pure SU(3) Yang-Mills theory, formulated in the background field method. Specifically, we consider the corresponding equation for the vertex that governs the interaction of two background gluons with a ghost-antighost pair. By virtue of the background gauge invariance, this vertex satisfies a naive Slavnov-Taylor identity, which is not deformed by the ghost sector of the theory. In the all-soft limit, where all momenta vanish, the form of this vertex may be obtained exactly from the corresponding Ward identity. This special result is subsequently reproduced at the level of the Schwinger-Dyson equation, by making extensive use of Taylor's theorem and exploiting a plethora of key relations, particular to the background field method. This information permits the determination of the error associated with two distinct truncation schemes, where the potential advantage from employing lattice data for the ghost dressing function is quantitatively assessed.
Address [Aguilar, A. C.; Oliveira, B. M.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000889065200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5426
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Ferreira, M.N.; Oliveira, B.M.; Papavassiliou, J.; Santos, L.R.
Title Schwinger poles of the three-gluon vertex: symmetry and dynamics Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 10 Pages 889 - 20pp
Keywords
Abstract The implementation of the Schwinger mechanism endows gluons with a nonperturbative mass through the formation of special massless poles in the fundamental QCD vertices; due to their longitudinal character, these poles do not cause divergences in on-shell amplitudes, but induce detectable effects in the Green's functions of the theory. Particularly important in this theoretical setup is the three-gluon vertex, whose pole content extends beyond the minimal structure required for the generation of a gluon mass. In the present work we analyze these additional pole patterns by means of two distinct, but ultimately equivalent, methods: the Slavnov-Taylor identity satisfied by the three-gluon vertex, and the nonlinear Schwinger-Dyson equation that governs the dynamical evolution of this vertex. Our analysis reveals that the Slavnov-Taylor identity imposes strict model-independent constraints on the associated residues, preventing them from vanishing. Approximate versions of these constraints are subsequently recovered from the Schwinger-Dyson equation, once the elements responsible for the activation of the Schwinger mechanism have been duly incorporated. The excellent coincidence between the two approaches exposes a profound connection between symmetry and dynamics, and serves as a nontrivial self-consistency test of this particular mass generating scenario.
Address [Aguilar, A. C.; Oliveira, B. M.; Santos, L. R.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001118963200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5861
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Ferreira, M.N.; Papavassiliou, J.
Title Exploring smoking-gun signals of the Schwinger mechanism in QCD Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 1 Pages 014030 - 26pp
Keywords
Abstract In Quantum Chromodynamics, the Schwinger mechanism endows the gluons with an effective mass through the dynamical formation of massless bound-state poles that are longitudinally coupled. The presence of these poles affects profoundly the infrared properties of the interaction vertices, inducing crucial modifications to their fundamental Ward identities. Within this general framework, we present a detailed derivation of the non-Abelian Ward identity obeyed by the pole-free part of the three-gluon vertex in the softgluon limit, and determine the smoking-gun displacement that the onset of the Schwinger mechanism produces to the standard result. Quite importantly, the quantity that describes this distinctive feature coincides formally with the bound-state wave function that controls the massless pole formation. Consequently, this signal may be computed in two independent ways: by solving an approximate version of the pertinent BetheSalpeter integral equation, or by appropriately combining the elements that enter in the aforementioned Ward identity. For the implementation of both methods we employ two- and three-point correlation functions obtained from recent lattice simulations, and a partial derivative of the ghost-gluon kernel, which is computed from the corresponding Schwinger-Dyson equation. Our analysis reveals an excellent coincidence between the results obtained through either method, providing a highly nontrivial self-consistency check for the entire approach. When compared to the null hypothesis, where the Schwinger mechanism is assumed to be inactive, the statistical significance of the resulting signal is estimated to be 3 standard deviations.
Address [Aguilar, A. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000748623100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5091
Permanent link to this record