|   | 
Details
   web
Records
Author (up) AGATA Collaboration (Siciliano, M. et al); Gadea, A.; Perez-Vidal, R.M.; Domingo-Pardo, C.
Title Pairing-quadrupole interplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in Sn-106,Sn-108 Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 806 Issue Pages 135474 - 7pp
Keywords Lifetime; Nuclear structure; Multi-nucleon transfer; Light Sn; Tracking array
Abstract The lifetimes of the low-lying excited states 2(+) and 4(+) have been directly measured in the neutron-deficient Sn-106,Sn-108 isotopes. The nuclei were populated via a deep-inelastic reaction and the lifetime measurement was performed employing a differential plunger device. The emitted gamma rays were detected by the AGATA array, while the reaction products were uniquely identified by the VAMOS++ magnetic spectrometer. Large-Scale Shell-Model calculations with realistic forces indicate that, independently of the pairing content of the interaction, the quadrupole force is dominant in the B(E2; 2(1)(+) -> 0(g.s)(+)) values and it describes well the experimental pattern for Sn104-114 ; the B(E2;(+)(4) -> 2(1)(+)) values, measured here for the first time, depend critically on a delicate pairing-quadrupole balance, disclosed by the very precise results in Sn-108.
Address [Siciliano, M.; Valiente-Dobon, J. J.; Goasduff, A.; Jaworski, G.; Marchi, T.; Napoli, D. R.; Saygi, B.; Egea-Canet, F. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, PD, Italy, Email: marco.siciliano@lnl.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000571760900006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4539
Permanent link to this record
 

 
Author (up) AGATA Collaboration (Valiente-Dobon, J.J. et al); Perez-Vidal, R.M.; Blasco Miquel, J.; Civera, J.V.; Gadea, A.
Title Conceptual design of the AGATA 2 pi array at LNL Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1049 Issue Pages 168040 - 14pp
Keywords AGATA spectrometer; LNL facility; gamma-ray tracking; Pulse shape analysis; PRISMA spectrometer; EUCLIDES detector; DANTE detector; TRACE detector; Plunger device
Abstract The Advanced GAmma Tracking Array (AGATA) has been installed at Laboratori Nazionali di Legnaro (LNL), Italy. In this installation, AGATA will consist, at the beginning, of 13 AGATA triple clusters (ATCs) with an angular coverage of 1n,and progressively the number of ATCs will increase up to a 2 pi angular coverage. This setup will exploit both stable and radioactive ion beams delivered by the Tandem-PIAVE-ALPI accelerator complex and the SPES facility. The new implementation of AGATA at LNL will be used in two different configurations, firstly one coupled to the PRISMA large-acceptance magnetic spectrometer and lately a second one at Zero Degrees, along the beam line. These two configurations will allow us to cover a broad physics program, using different reaction mechanisms, such as Coulomb excitation, fusion-evaporation, transfer and fission at energies close to the Coulomb barrier. These setups have been designed to be coupled with a large variety of complementary detectors such as charged particle detectors, neutron detectors, heavy-ion detectors, high-energy gamma-ray arrays, cryogenic and gasjet targets and the plunger device for lifetime measurements. We present in this paper the conceptual design, characteristics and performance figures of this implementation of AGATA at LNL.
Address [Valiente-Dobon, J. J.; Goasduff, A.; Angelini, F.; Balogh, M.; Brugnara, D.; Cocconi, P.; Cogo, A.; Collado, J.; Ertoprak, A.; Galtarossa, F.; Gambalonga, A.; Gongora Servin, B.; Gottardo, A.; Gozzelino, A.; Gulmini, M.; Marchi, T.; Modanese, P.; Napoli, D. R.; Pellumaj, J.; Perez-Vidal, R. M.; Pilotto, E.; Raniero, W.; Rosso, D.; Scarpa, D.; Sedlak, M.; Toniolo, N.; Volpe, V.; Zago, L.; Zanon, I.; Allegrini, M. L.; Benini, D.; Biasotto, M.; Corradi, L.; De Angelis, G.; De Ruvo, L.; Fantinel, S.; Fioretto, E.; Minarello, A.; Stefanini, A. M.] INFN, Lab Nazl Legnaro, Legnaro, Italy, Email: valiente@lnl.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001020811800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5590
Permanent link to this record
 

 
Author (up) AGATA Collaboration (Vogt, A. et al); Gadea, A.
Title High-spin structures in Xe-132 and Xe-133 and evidence for isomers along the N=79 isotones Type Journal Article
Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 96 Issue 2 Pages 024321 - 14pp
Keywords
Abstract The transitional nuclei Xe-132 and Xe-133 are investigated after multinucleon-transfer (MNT) and fusionevaporation reactions. Both nuclei are populated (i) in Xe-136 + 2(08P)b MNT reactions employing the highresolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the Xe-136 + Pt-198 MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a Te-130(alpha, xn) Xe134-xn fusion-evaporation reaction employing the HORUS gamma-ray array at the University of Cologne. The high-spin level schemes are considerably extended above the J(pi) = (7(-)) and (10+) isomers in Xe-132 and above the 11/2(-) isomer in Xe-133. The results are compared to the high-spin systematics of the Z = 54 as well as the N = 78 and N = 79 chains. Furthermore, evidence is found for a long-lived (T-1/2 >> μs) isomer in Xe-133 which closes a gap along the N = isotones. Shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features.
Address [Vogt, A.; Birkenbach, B.; Reiter, P.; Arnswald, K.; Blazhev, A.; Eberth, J.; Fransen, C.; Fu, B.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Karayonchev, V.; Kaya, L.; Mueller-Gatermann, C.; Queiser, M.; Regis, J. -M.; Saed-Samii, N.; Seidlitz, M.; Siebeck, B.; Wolf, K.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: andreas.vogt@ikp.uni-koeln.de
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000408346100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3252
Permanent link to this record
 

 
Author (up) Aggarwal, N. et al; Figueroa, D.G.
Title Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies Type Journal Article
Year 2021 Publication Living Reviews in Relativity Abbreviated Journal Living Rev. Relativ.
Volume 24 Issue 1 Pages 4 - 74pp
Keywords Ultra-high-frequency gravitational waves; Cosmological gravitational waves; Gravitational wave detectors; Fundamental physics with gavitational waves
Abstract The first direct measurement of gravitational waves by the LIGO and Virgo collaborations has opened up new avenues to explore our Universe. This white paper outlines the challenges and gains expected in gravitational-wave searches at frequencies above the LIGO/Virgo band, with a particular focus on Ultra High-Frequency Gravitational Waves (UHF-GWs), covering the MHz to GHz range. The absence of known astrophysical sources in this frequency range provides a unique opportunity to discover physics beyond the Standard Model operating both in the early and late Universe, and we highlight some of the most promising gravitational sources. We review several detector concepts that have been proposed to take up this challenge, and compare their expected sensitivity with the signal strength predicted in various models. This report is the summary of the workshop “Challenges and opportunities of high-frequency gravitational wave detection” held at ICTP Trieste, Italy in October 2019, that set up the stage for the recently launched Ultra-High-Frequency Gravitational Wave (UHF-GW) initiative.
Address [Aggarwal, Nancy] Northwestern Univ, Dept Phys & Astron, Ctr Interdisciplinary Explorat & Res Astrophys CI, Ctr Fundamental Phys, Evanston, IL 60208 USA, Email: nancy.aggarwal@northwestern.edu;
Corporate Author Thesis
Publisher Springer Int Publ Ag Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2367-3613 ISBN Medium
Area Expedition Conference
Notes WOS:000727359500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5074
Permanent link to this record
 

 
Author (up) Agostini, P. et al; Mandal, S.
Title The Large Hadron-Electron Collider at the HL-LHC Type Journal Article
Year 2021 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 48 Issue 11 Pages 110501 - 364pp
Keywords deep-inelastic scattering; high-lumi LHC; QCD; Higgs; top and electroweak physics; nuclear physics; beyond Standard Model; energy-recovery-linac; accelerator physics
Abstract The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton-nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron-hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.
Address [Agostini, P.; Armesto, N.; Ferreiro, E. G.; Salgado, C. A.] Univ Santiago de Compostela USC, Santiago De Compostela, Spain, Email: britzger@mpp.mpg.de;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000731762500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5067
Permanent link to this record