toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author n_TOF Collaboration (Wright, T. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title Measurement of the U-238(n,gamma) cross section up to 80 keV with the Total Absorption Calorimeter at the CERN n_TOF facility Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 96 Issue 6 Pages 064601 - 11pp  
  Keywords  
  Abstract The radiative capture cross section of a highly pure (99.999%), 6.125(2) grams and 9.56(5) x 10(-4) atoms/barn areal density U-238 sample has been measured with the Total Absorption Calorimeter (TAC) in the 185 m flight path at the CERN neutron time-of-flight facility n_TOF. This measurement is in response to the NEA High Priority Request list, which demands an accuracy in this cross section of less than 3% below 25 keV. These data have undergone careful background subtraction, with special care being given to the background originating from neutrons scattered by the 238U sample. Pileup and dead-time effects have been corrected for. The measured cross section covers an energy range between 0.2 eV and 80 keV, with an accuracy that varies with neutron energy, being better than 4% below 25 keV and reaching at most 6% at higher energies.  
  Address (down) [Wright, T.; Billowes, J.; Ryan, J. A.; Ware, T.] Univ Manchester, Manchester, Lancs, England, Email: tobias.wright@manchester.ac.uk  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000416848700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3392  
Permanent link to this record
 

 
Author Particle Data Group (Workman, R.L. et al); Hernandez-Rey, J.J.; Pich, A. url  doi
openurl 
  Title Review of Particle Physics Type Journal Article
  Year 2022 Publication Progress of Theoretical and Experimental Physics Abbreviated Journal Prog. Theor. Exp. Phys.  
  Volume 2022 Issue 8 Pages 083C01 - 2270pp  
  Keywords  
  Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app.  
  Address (down) [Workman, R. L.] George Washington Univ, Dept Phys, Washington, DC 20052 USA  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-3911 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000841419600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5355  
Permanent link to this record
 

 
Author Woolley, B.; Burt, G.; Dexter, A.C.; Peacock, R.; Millar, W.L.; Catalan Lasheras, N.; Degiovanni, A.; Grudiev, A.; Mcmonagle, G.; Syratchev, I.; Wuensch, W.; Rodriguez Castro, E.; Giner Navarro, J. doi  openurl
  Title High-gradient behavior of a dipole-mode rf structure Type Journal Article
  Year 2020 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 23 Issue 12 Pages 122002 - 11pp  
  Keywords  
  Abstract A normal-conducting, X-band traveling wave structure operating in the dipole mode has been systematically high-gradient tested to gain insight into the maximum possible gradients in these types of structure. Measured structure conditioning, breakdown behavior, and achieved surface fields are reported as well as a postmortem analysis of the breakdown position and a scanning electron microscope analysis of the high-field surfaces. The results of these measurements are then compared to high-gradient results from monopole-mode cavities. Scaled to a breakdown rate of 10(-6), the cavities were found to operate at a peak electric field of 154 MV/m and a peak modified Poynting vector S-c of 5.48 MW/mm(2). The study provides important input for the further development of dipole-mode cavities for use in the Compact Linear Collider as a crab cavity and dipole-mode cavities for use in x-ray free-electron lasers as well as for studies of the fundamental processes in vacuum arcs. Of particular relevance are the unique field patterns in dipole cavities compared to monopole cavities, where the electric and magnetic fields peak in orthogonal planes, which allow the separation of the role of electric and magnetic fields in breakdown via postmortem damage observation. The azimuthal variation of breakdown crater density is measured and is fitted to sinusoidal functions. The best fit is a power law fit of exponent 6. This is significant, as it shows how breakdown probability varies over a surface area with a varying electric field after conditioning to a given peak field.  
  Address (down) [Woolley, B.; Burt, G.; Dexter, A. C.; Peacock, R.; Millar, W. L.] Univ Lancaster, Lancaster LA1 4YW, England  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9888 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000614886300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4696  
Permanent link to this record
 

 
Author NEXT Collaboration (Woodruff, K. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title Radio frequency and DC high voltage breakdown of high pressure helium, argon, and xenon Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 4 Pages P04022 - 15pp  
  Keywords Gaseous detectors; Gaseous imaging and tracking detectors  
  Abstract Motivated by the possibility of guiding daughter ions from double beta decay events to single-ion sensors for barium tagging, the NEXT collaboration is developing a program of R&D to test radio frequency (RF) carpets for ion transport in high pressure xenon gas. This would require carpet functionality in regimes at higher pressures than have been previously reported, implying correspondingly larger electrode voltages than in existing systems. This mode of operation appears plausible for contemporary RF-carpet geometries due to the higher predicted breakdown strength of high pressure xenon relative to low pressure helium, the working medium in most existing RF carpet devices. In this paper we present the first measurements of the high voltage dielectric strength of xenon gas at high pressure and at the relevant RF frequencies for ion transport (in the 10MHz range), as well as new DC and RF measurements of the dielectric strengths of high pressure argon and helium gases at small gap sizes. We find breakdown voltages that are compatible with stable RF carpet operation given the gas, pressure, voltage, materials and geometry of interest.  
  Address (down) [Woodruff, K.; Baeza-Rubio, J.; Huerta, D.; Jones, B. J. P.; McDonald, A. D.; Norman, L.; Nygren, D. R.; Byrnes, N. K.; Denisenko, A. A.; Foss, F. W., Jr.; Laing, A.; Martinez, A.; Rogers, L.; Thapa, P.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: katherine.woodruff@uta.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000534740000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4401  
Permanent link to this record
 

 
Author Witte, S.; Villanueva-Domingo, P.; Gariazzo, S.; Mena, O.; Palomares-Ruiz, S. url  doi
openurl 
  Title EDGES result versus CMB and low-redshift constraints on ionization histories Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 10 Pages 103533 - 8pp  
  Keywords  
  Abstract We examine the results from the Experiment to Detect the Global Epoch of Reionization Signature (EDGES), which has recently claimed the detection of a strong absorption in the 21 cm hyperfine transition line of neutral hydrogen, at redshifts demarcating the early stages of star formation. More concretely, we study the compatibility of the shape of the EDGES absorption profile, centered at a redshift of z similar to 17.2, with measurements of the reionization optical depth, the Gunn-Peterson optical depth, and Lyman-alpha emission from star-forming galaxies, for a variety of possible reionization models within the standard ACDM framework (that is, a Universe with a cosmological constant. and cold dark matter CDM). When, conservatively, we only try to accommodate the location of the absorption dip, we identify a region in the parameter space of the astrophysical parameters that successfully explains all of the aforementioned observations. However, one of the most abnormal features of the EDGES measurement is the absorption amplitude, which is roughly a factor of 2 larger than the maximum allowed value in the ACDM framework. We point out that the simple considered astrophysical models that produce the largest absorption amplitudes are unable to explain the depth of the dip and of reproducing the observed shape of the absorption profile.  
  Address (down) [Witte, Samuel; Villanueva-Domingo, Pablo; Gariazzo, Stefano; Mena, Olga; Palomares-Ruiz, Sergio] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000433291600010 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3606  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva