|   | 
Details
   web
Records
Author Oliver, S.; Gimenez-Alventosa, V.; Berumen, F.; Gimenez, V.; Beaulieu, L.; Ballester, F.; Vijande, J.
Title Benchmark of the PenRed Monte Carlo framework for HDR brachytherapy Type Journal Article
Year 2023 Publication Zeitschrift für Medizinische Physik Abbreviated Journal (down) Z. Med. Phys.
Volume 33 Issue 4 Pages 511-528
Keywords Monte Carlo; PenRed; Brachytherapy; DICOM; Medical physics
Abstract Purpose: The purpose of this study is to validate the PenRed Monte Carlo framework for clinical applications in brachytherapy. PenRed is a C++ version of Penelope Monte Carlo code with additional tallies and utilities. Methods and materials: Six benchmarking scenarios are explored to validate the use of PenRed and its improved bachytherapy-oriented capabilities for HDR brachytherapy. A new tally allowing the evaluation of collisional kerma for any material using the track length kerma estimator and the possibility to obtain the seed positions, weights and directions processing directly the DICOM file are now implemented in the PenRed distribution. The four non-clinical test cases developed by the Joint AAPM-ESTRO-ABG-ABS WG-DCAB were evaluated by comparing local and global absorbed dose differences with respect to established reference datasets. A prostate and a palliative lung cases, were also studied. For them, absorbed dose ratios, global absorbed dose differences, and cumulative dose-volume histograms were obtained and discussed. Results: The air-kerma strength and the dose rate constant corresponding to the two sources agree with the reference datatests within 0.3% (Sk) and 0.1% (K). With respect to the first three WG-DCAB test cases, more than 99.8% of the voxels present local (global) differences within +/- 1%(+/- 0.1%) of the reference datasets. For test Case 4 reference dataset, more than 94.9%(97.5%) of voxels show an agreement within +/- 1%(+/- 0.1%), better than similar benchmarking calculations in the literature. The track length kerma estimator scorer implemented increases the numerical efficiency of brachytherapy calculations two orders of magnitude, while the specific brachytherapy source allows the user to avoid the use of error-prone intermediate steps to translate the DICOM information into the simulation. In both clinical cases, only minor absorbed dose differences arise in the low-dose isodoses. 99.8% and 100% of the voxels have a global absorbed dose difference ratio within +/- 0.2%for the prostate and lung cases, respectively. The role played by the different segmentation and composition material in the bone structures was discussed, obtaining negligible absorbed dose differ-ences. Dose-volume histograms were in agreement with the reference data.Conclusions: PenRed incorporates new tallies and utilities and has been validated for its use for detailed and precise high-dose-rate brachytherapy simulations.
Address [Oliver, S.] Univ Politecn Valencia, Inst Segur Ind, Radiofis & Medioambiental ISIRYM, Camide Vera s n, Valencia 46022, Spain, Email: sanolgi@upvnet.upv.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0939-3889 ISBN Medium
Area Expedition Conference
Notes WOS:001137118400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5885
Permanent link to this record
 

 
Author Vento, V.
Title Ions, Protons, and Photons as Signatures of Monopoles Type Journal Article
Year 2018 Publication Universe Abbreviated Journal (down) Universe
Volume 4 Issue 11 Pages 117 - 12pp
Keywords
Abstract Magnetic monopoles have been a subject of interest since Dirac established the relationship between the existence of monopoles and charge quantization. The Dirac quantization condition bestows the monopole with a huge magnetic charge. The aim of this study was to determine whether this huge magnetic charge allows monopoles to be detected by the scattering of charged ions and protons on matter where they might be bound. We also analyze if this charge favors monopolium (monopole-antimonopole) annihilation into many photons over two photon decays.
Address [Vento, Vicente] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: vicente.vento@uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2218-1997 ISBN Medium
Area Expedition Conference
Notes WOS:000451167700007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3819
Permanent link to this record
 

 
Author n_TOF Collaboration (Amaducci, S. et al); Babiano-Suarez, V.; Caballero-Ontanaya, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.
Title First Results of the Ce-140(n,gamma)Ce-141 Cross-Section Measurement at n_TOF Type Journal Article
Year 2021 Publication Universe Abbreviated Journal (down) Universe
Volume 7 Issue 6 Pages 200 - 11pp
Keywords
Abstract An accurate measurement of the Ce-140(n,gamma) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the Ce-140 capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in Ce-140 to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the Ce-140 Maxwellian-averaged cross-section.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000665969800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4877
Permanent link to this record
 

 
Author Salesa Greus, F.; Sanchez Losa, A.
Title Multimessenger Astronomy with Neutrinos Type Journal Article
Year 2021 Publication Universe Abbreviated Journal (down) Universe
Volume 7 Issue 11 Pages 397 - 11pp
Keywords multimessenger astronomy; astroparticle physics; neutrinos
Abstract Multimessenger astronomy is arguably the branch of the astroparticle physics field that has seen the most significant developments in recent years. In this manuscript, we will review the state-of-the-art, the recent observations, and the prospects and challenges for the near future. We will give special emphasis to the observation carried out with neutrino telescopes.
Address [Salesa Greus, Francisco; Sanchez Losa, Agustin] Univ Valencia, CSIC, IFIC Inst Fis Corpuscular, C Catedratico Jose Beltran 2, E-46980 Paterna, Spain, Email: sagreus@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000724957500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5036
Permanent link to this record
 

 
Author Zornoza, J.D.
Title Review on Indirect Dark Matter Searches with Neutrino Telescopes Type Journal Article
Year 2021 Publication Universe Abbreviated Journal (down) Universe
Volume 7 Issue 11 Pages 415 - 10pp
Keywords dark matter; neutrino telescopes; IceCube; ANTARES; KM3NeT; SuperK
Abstract The search for dark matter is one of the hottest topics in Physics today. The fact that about 80% of the matter of the Universe is of unknown nature has triggered an intense experimental activity to detect this kind of matter and a no less intense effort on the theory side to explain it. Given the fact that we do not know the properties of dark matter well, searches from different fronts are mandatory. Neutrino telescopes are part of this experimental quest and offer specific advantages. Among the targets to look for dark matter, the Sun and the Galactic Center are the most promising ones. Considering models of dark matter densities in the Sun, neutrino telescopes have put the best limits on spin-dependent cross section of proton-WIMP scattering. Moreover, they are competitive in the constraints on the thermally averaged annihilation cross-section for high WIMP masses when looking at the Galactic Centre. Other results are also reviewed.
Address [de Dios Zornoza, Juan] IFIC Inst Fis Corpuscular UV CSIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: zornoza@ific.uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000723346500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5044
Permanent link to this record