toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Alarcon, J.M.; Hiller Blin, A.N.; Vicente Vacas, M.J.; Weiss, C. url  doi
openurl 
  Title Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis Type Journal Article
  Year 2017 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 964 Issue Pages 18-54  
  Keywords Electromagnetic form factors; Chiral lagrangians; Dispersion relations; Hyperons; Charge distribution  
  Abstract The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. We calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b = O(M-pi(-1)) using methods of relativistic chiral effective field theory (chi EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M-pi(2) are calculated using relativistic chi EFT including octet and decuplet baryons. The chi EFT calculations are extended into the rho meson mass region using an N / D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. The approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.  
  Address [Alarcon, J. M.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: alarcon@jlab.org  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000404199900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3188  
Permanent link to this record
 

 
Author (up) Wang, Y.F.; Yao, D.L.; Zheng, H.Q. url  doi
openurl 
  Title New insights on low energy pi N scattering amplitudes: comprehensive analyses at O (p(3)) level Type Journal Article
  Year 2019 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 43 Issue 6 Pages 064110 - 22pp  
  Keywords dispersion relations; pion-nucleon scattering; chiral perturbation theory  
  Abstract A production representation of partial-wave S matrix is utilized to construct low-energy elastic pion-nucleon scattering amplitudes from cuts and poles on complex Riemann sheets. Among them, the contribution of left-hand cuts is estimated using the O (p(3)) results obtained in covariant baryon chiral perturbation theory within the extendedon-nass-shell scheme. By fitting to data on partial-wave phase shifts, it is indicated that the existences of hidden poles in S-11 and P-11 channels, as conjectured in our previous paper [Eur. Phys. J. C, 78(7): 543 (2018)], are firmly established. Specifically, the pole mass of the S-11 hidden resonance is determined to be (895 +/- 81)-(164 +/- 23)i MeV, whereas, the virtual pole in the P-11 channel locates at (966 +/- 18) MeV. It is found that analyses at the O (p(3)) level improves significantly the fit quality, comparing with the previous O (p(2)) one. Quantitative studies with cautious physical discussions are also conducted for the other S- and P-wave channels.  
  Address [Wang, Yu-Fei; Zheng, Han-Qing] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: yaodeliang@pku.edu.cn  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000468501700013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4020  
Permanent link to this record
 

 
Author (up) Wang, Y.F.; Yao, D.L.; Zheng, H.Q. url  doi
openurl 
  Title On the existence of N*(890) resonance in S-11 channel of N scatterings Type Journal Article
  Year 2019 Publication Frontiers of Physics Abbreviated Journal Front. Phys.  
  Volume 14 Issue 2 Pages 24501 - 6pp  
  Keywords dispersion relations; N scatterings; nucleon resonance  
  Abstract Low-energy partial-wave N scattering data is reexamined with the help of the production representation of partial-wave S matrix, where branch cuts and poles are thoroughly under consideration. The left-hand cut contribution to the phase shift is determined, with controlled systematic error estimates, by using the results of O(p(3)) chiral perturbative amplitudes obtained in the extended-onmass- shell scheme. In S-11 and P-11 channels, severe discrepancies are observed between the phase shift data and the sum of all known contributions. Statistically satisfactory fits to the data can only be achieved by adding extra poles in the two channels. We find that a S-11 resonance pole locates at zr = (0:895-0:081)-(0:164-0:023)i GeV, on the complex s-plane. On the other hand, a P-11 virtual pole, as an accompanying partner of the nucleon bound-state pole, locates atzv = (0:966-0:018) GeV, slightly above the nucleon pole on the real axis below threshold. Physical origin of the two newly established poles is explored to the best of our knowledge. It is emphasized that the O(p(3)) calculation greatly improves the fit quality comparing with the previous O(p(2)) one.  
  Address [Wang, Yu-Fei; Zheng, Han-Qing] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: deliang.yao@ific.uv.es  
  Corporate Author Thesis  
  Publisher Higher Education Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0462 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454564100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3857  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva