toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Aggarwal, N. et al; Figueroa, D.G. url  doi
openurl 
  Title Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies Type Journal Article
  Year 2021 Publication Living Reviews in Relativity Abbreviated Journal Living Rev. Relativ.  
  Volume 24 Issue 1 Pages 4 - 74pp  
  Keywords Ultra-high-frequency gravitational waves; Cosmological gravitational waves; Gravitational wave detectors; Fundamental physics with gavitational waves  
  Abstract The first direct measurement of gravitational waves by the LIGO and Virgo collaborations has opened up new avenues to explore our Universe. This white paper outlines the challenges and gains expected in gravitational-wave searches at frequencies above the LIGO/Virgo band, with a particular focus on Ultra High-Frequency Gravitational Waves (UHF-GWs), covering the MHz to GHz range. The absence of known astrophysical sources in this frequency range provides a unique opportunity to discover physics beyond the Standard Model operating both in the early and late Universe, and we highlight some of the most promising gravitational sources. We review several detector concepts that have been proposed to take up this challenge, and compare their expected sensitivity with the signal strength predicted in various models. This report is the summary of the workshop “Challenges and opportunities of high-frequency gravitational wave detection” held at ICTP Trieste, Italy in October 2019, that set up the stage for the recently launched Ultra-High-Frequency Gravitational Wave (UHF-GW) initiative.  
  Address [Aggarwal, Nancy] Northwestern Univ, Dept Phys & Astron, Ctr Interdisciplinary Explorat & Res Astrophys CI, Ctr Fundamental Phys, Evanston, IL 60208 USA, Email: nancy.aggarwal@northwestern.edu;  
  Corporate Author Thesis  
  Publisher Springer Int Publ Ag Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2367-3613 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000727359500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5074  
Permanent link to this record
 

 
Author (up) LISA Cosmology Working Group (Bartolo, N. et al); Figueroa, D.G. url  doi
openurl 
  Title Probing anisotropies of the Stochastic Gravitational Wave Background with LISA Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue Pages 009 - 65pp  
  Keywords gravitational wave detectors; gravitational waves / sources; gravitational waves / theory; physics of the early universe  
  Abstract We investigate the sensitivity of the Laser Interferometer Space Antenna (LISA) to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We first discuss the main astrophysical and cosmological sources of SGWB which are characterized by anisotropies in the GW energy density, and we build a Signal-to-Noise estimator to quantify the sensitivity of LISA to different multipoles. We then perform a Fisher matrix analysis of the prospects of detectability of anisotropic features with LISA for individual multipoles, focusing on a SGWB with a power-law frequency profile. We compute the noise angular spectrum taking into account the specific scan strategy of the LISA detector. We analyze the case of the kinematic dipole and quadrupole generated by Doppler boosting an isotropic SGWB. We find that beta Omega(GW) similar to 2 x 10(-11) is required to observe a dipolar signal with LISA. The detector response to the quadrupole has a factor similar to 10(3) beta relative to that of the dipole. The characterization of the anisotropies, both from a theoretical perspective and from a map-making point of view, allows us to extract information that can be used to understand the origin of the SGWB, and to discriminate among distinct superimposed SGWB sources.  
  Address [Bartolo, Nicola; Bertacca, Daniele; Peloso, Marco; Ricciardone, Angelo] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy, Email: angelo.ricciardone@pd.infn.it  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000899443700009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5437  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva