toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Aliaga, R.J.; Herrero-Bosch, V.; Capra, S.; Pullia, A.; Duenas, J.A.; Grassi, L.; Triossi, A.; Domingo-Pardo, C.; Gadea, R.; Gonzalez, V.; Huyuk, T.; Sanchis, E.; Gadea, A.; Mengoni, D. doi  openurl
  Title Conceptual design of the TRACE detector readout using a compact, dead time-less analog memory ASIC Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 800 Issue Pages 34-39  
  Keywords Analog memory; Dead time; Detector readout; Front-end electronics; Switched Capacitor Array (SCA); Triggerless data acquisition  
  Abstract The new TRacking Array for light Charged particle Ejectiles (TRACE) detector system requires monitorization and sampling of all pulses in a large number of channels with very strict space and power consumption restrictions for the front-end electronics and cabling, Its readout system is to be based on analog memory ASICs with 64 channels each that sample a 1 μs window of the waveform of any valid pulses at 200 MHz while discarding any other signals and are read out at 50 MHz with external ADC digitization. For this purpose, a new, compact analog memory architecture is described that allows pulse capture with zero dead time in any channel while vastly reducing the total number of storage cells, particularly for large amounts of input channels. This is accomplished by partitioning the typical Switched Capacitor Array structure into two pipelined, asymmetric stages and introducing FIFO queue-like control circuitry for captured data, achieving total independence between the capture and readout operations.  
  Address [Aliaga, R. J.; Domingo-Pardo, C.; Hueyuek, T.; Gadea, A.] Inst Fis Corpuscular, Paterna 46980, Spain, Email: raalva@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000361878200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2407  
Permanent link to this record
 

 
Author (up) Alvarez, V.; Herrero-Bosch, V.; Esteve, R.; Laing, A.; Rodriguez, J.; Querol, M.; Monrabal, F.; Toledo, J.F.; Gomez-Cadenas, J.J. url  doi
openurl 
  Title The electronics of the energy plane of the NEXT-White detector Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 917 Issue Pages 68-76  
  Keywords Calorimetry; Front-end electronics; Digital baseline restoration  
  Abstract This paper describes the electronics of NEXT-White (NEW) detector PMT plane, a high pressure xenon TPC with electroluminescent amplification (HPXe-EL) currently operating at the Laboratorio Subterraneo de Canfranc (LSC) in Huesca, Spain. In NEXT-White the energy of the event is measured by a plane of photomultipliers (PMTs) located behind a transparent cathode. The PMTs are Hamamatsu R11410-10 chosen due to their low radioactivity. The electronics have been designed and implemented to fulfill strict requirements: an overall energy resolution below 1% and a radiopurity budget of 20 mBq unit(-1) in the chain of Bi-214. All the components and materials have been carefully screened to assure a low radioactivity level and at the same time meet the required front-end electronics specifications. In order to reduce low frequency noise effects and enhance detector safety a grounded cathode connection has been used for the PMTs. This implies an AC-coupled readout and baseline variations in the PMT signals. A detailed description of the electronics and a novel approach based on a digital baseline restoration to obtain a linear response and handle AC coupling effects is presented. The final PMT channel design has been characterized with linearity better than 0.4% and noise below 0.4 mV.  
  Address [Alvarez, V; Laing, A.; Rodriguez, J.; Querol, M.; Gomez-Cadenas, J. J.] CSIC, IFIC, Inst Fis Corpuscular, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: vicente.alvarez@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000455016500010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3868  
Permanent link to this record
 

 
Author (up) ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Performance of the front-end electronics of the ANTARES neutrino telescope Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 622 Issue 1 Pages 59-73  
  Keywords Neutrino telescope; Photomultiplier tube; Front-end electronics; ASIC  
  Abstract ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip: results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated.  
  Address [Aguilar, J. A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC, CSIC, Valencia 46071, Spain, Email: s.loucatos@cea.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282530300009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 363  
Permanent link to this record
 

 
Author (up) Barrientos, D.; Bellato, M.; Bazzacco, D.; Bortolato, D.; Cocconi, P.; Gadea, A.; Gonzalez, V.; Gulmini, M.; Isocrate, R.; Mengoni, D.; Pullia, A.; Recchia, F.; Rosso, D.; Sanchis, E.; Toniolo, N.; Ur, C.A.; Valiente-Dobon, J.J. url  doi
openurl 
  Title Performance of the Fully Digital FPGA-Based Front-End Electronics for the GALILEO Array Type Journal Article
  Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 62 Issue 6 Pages 3134-3139  
  Keywords FPGA; front-end electronics; gamma-ray spectroscopy; germanium detectors  
  Abstract In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. This work presents the first results of the digital FEE system coupled with a GALILEO germanium detector, which has demonstrated the capability to achieve an energy resolution of 1.53% at an energy of 1.33 MeV, similar to the one obtained with a conventional analog system. While keeping a good performance in terms of energy resolution, digital electronics will allow to instrument the full GALILEO array with a versatile system with high integration and low power consumption and costs.  
  Address [Barrientos, D.; Bortolato, D.; Cocconi, P.; Gulmini, M.; Rosso, D.; Toniolo, N.; Valiente-Dobon, J. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy, Email: diego.barrientos@lnl.infn.it  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372013500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2612  
Permanent link to this record
 

 
Author (up) Barrio, J.; Etxebeste, A.; Lacasta, C.; Muñoz, E.; Oliver, J.F.; Solaz, C.; Llosa, G. doi  openurl
  Title Performance of VATA64HDR16 ASIC for medical physics applications based on continuous crystals and SiPMs Type Journal Article
  Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 10 Issue Pages P12001 - 12pp  
  Keywords Solid state detectors; Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs etc); Front-end electronics for detector readout; Gamma detectors (scintillators, CZT, HPG, HgI etc)  
  Abstract Detectors based on Silicon Photomultipliers (SiPMs) coupled to continuous crystals are being tested in medical physics applications due to their potential high resolution and sensitivity. To cope with the high granularity required for a very good spatial resolution, SiPM matrices with a large amount of elements are needed. To be able to read the information coming from each individual channel, dedicated ASICs are employed. The VATA64HDR16 ASIC is a 64-channel, charge-sensitive amplifier that converts the collected charge into a proportional current or voltage signal. A complete assessment of the suitability of that ASIC for medical physics applications based on continuous crystals and SiPMs has been carried out. The input charge range is linear from 20 pC up to 55 pC. The energy resolution obtained at 511 keV is 10% FWHM with a LaBr3 crystal and 16% FWHM with a LYSO crystal. A coincidence timing resolution of 24 ns FWHM is obtained with two LYSO crystals.  
  Address [Barrio, J.; Etxebeste, A.; Lacasta, C.; Munoz, E.; Oliver, J. F.; Solaz, C.; Llosa, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parque Cient,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: John.Barrio@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000369998500034 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2548  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva