toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Andricek, L. et al; Lacasta, C.; Marinas, C.; Vos, M. doi  openurl
  Title Intrinsic resolutions of DEPFET detector prototypes measured at beam tests Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 638 Issue 1 Pages 24-32  
  Keywords Silicon pixel detector; Detector resolution; Spatial resolution; DEPFET; Beam test  
  Abstract The paper is based on the data of the 2009 DEPFET beam test at CERN SPS. The beam test used beams of pions and electrons with energies between 40 and 120 GeV, and the sensors tested were prototypes with thickness of 450 μm and pixel pitch between 20 and 32 μm. Intrinsic resolutions of the detectors are calculated by disentangling the contributions of measurement errors and multiple scattering in tracking residuals. Properties of the intrinsic resolution estimates and factors that influence them are discussed. For the DEPFET detectors in the beam test, the calculation yields intrinsic resolutions of approximate to 1 μm, with a typical accuracy of 0.1 μm. Bias scan, angle scan, and energy scan are used as example studies to show that the intrinsic resolutions are a useful tool in studies of detector properties. With sufficiently precise telescopes, detailed resolution maps can be constructed and used to study and optimize detector performance.  
  Address [Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Malina, L.; Scheirich, J.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague, Czech Republic, Email: peter.kodys@mff.cuni.cz  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290082600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 618  
Permanent link to this record
 

 
Author (up) Belle-II DEPFET and PXD Collaboration (Ye, H. et al); Boronat, M.; Esperante, D.; Fuster, J.; Gomis, P.; Lacasta, C.; Vos, M. doi  openurl
  Title Commissioning and performance of the Belle II pixel detector Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 987 Issue Pages 164875 - 5pp  
  Keywords Belle II; Pixel detector; DEPFET  
  Abstract The Belle II experiment at the SuperKEKB energy-asymmetric e(+)e(-) collider has completed a series of substantial upgrades and started collecting data in 2019. The experiment is expected to accumulate a data set of 50 ab(-1) to explore new physics beyond the Standard Model at the intensity frontier. The pixel detector (PXD) of Belle II plays a key role in vertex determination. It has been developed using the DEpleted P-channel Field Effect Transistor (DEPFET) technology, which combines low power consumption in the active pixel area and low intrinsic noise with a very small material budget. In this paper, commissioning and performance of the PXD measured with first collision data are presented.  
  Address [Alonso, O.; Dieguez, A.] Univ Barcelona, C Marti Franques 1, Barcelona 08028, Spain, Email: hua.ye@desy.de  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000597154800008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4653  
Permanent link to this record
 

 
Author (up) Belle-II DEPFET and PXD Collaborations (Wang, B. et al); Marinas, C. doi  openurl
  Title Operational experience of the Belle II pixel detector Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1032 Issue Pages 166631 - 7pp  
  Keywords Belle II PXD; DEPFET; Pixel detector; Vertex detector  
  Abstract The Belle II experiment at the SuperKEKB accelerator has started its physics data taking with the full detector setup in March 2019. It aims to collect 40 times more e+e- collision data compared with its predecessor Belle experiment. The Belle II pixel detector (PXD) is based on the Depleted P-channel Field Effect Transistor (DEPFET) technology. The PXD plays an important role in the tracking and vertexing of the Belle II detector. Its two layers are arranged at radii of 14 mm and 22 mm around the interaction point. The sensors are thinned down to 75 μm to minimize multiple scattering, and each module has interconnects and ASICs integrated on the sensor with silicon frames for mechanical support. PXD showed good performance during data taking. It also faces several operational challenges due to the high background level from the SuperKEKB accelerator, such as the damage from beam loss events, the drift in the HV working point due to radiation effect, and the impact of the high background.  
  Address [Alonso, O.; Dieguez, A.] Univ Barcelona, C Marti Franques 1, Barcelona 08028, Spain, Email: wang@mpp.mpg.de  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000793768200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5227  
Permanent link to this record
 

 
Author (up) DEPFET collaboration (Alonso, O. et al); Boronat, M.; Esperante-Pereira, D.; Fuster, J.; Garcia, I.G.; Lacasta, C.; Oyanguren, A.; Ruiz, P.; Timon, G.; Vos, M. url  doi
openurl 
  Title DEPFET Active Pixel Detectors for a Future Linear e(+)e(-) Collider Type Journal Article
  Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 60 Issue 2 Pages 1457-1465  
  Keywords Active pixel sensor; DEPFET; linear collider; vertex detector  
  Abstract The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 μm. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling, and services. In this paper, the status of the DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear e(+)e(-) collider.  
  Address [Alonso, O.; Casanova, R.; Dieguez, A.] Univ Barcelona, E-08028 Barcelona, Spain, Email: marcel.vos@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320856800029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1489  
Permanent link to this record
 

 
Author (up) Marinas, C.; Vos, M. doi  openurl
  Title The Belle-II DEPFET pixel detector: A step forward in vertexing in the superKEKB flavour factory Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 650 Issue 1 Pages 59-63  
  Keywords SuperKEKB; Belle-II; DEPFET; Pixel detector; ASIC; Mechanics; Cooling; Resolution  
  Abstract An upgrade of the successful asymmetric e(+)e(-) collider in KEK (Tsukuba, Japan) is foreseen by the fall of 2013. This new Super Flavor Factory will deliver an increased instantaneous luminosity of up to L = 8 x 10(35) cm(-2) s(-1), 40 times larger than the current KEKB machine. To exploit these new conditions and provide high precision measurements of the decay vertex of the B meson systems, a new silicon vertex detector will be operated in Belle. This new detector will consist of two layers of DEPFET Active Pixel Sensors as close as possible to the interaction point. DEPFET is a field effect transistor, with an additional deep implant underneath the channel's gate, integrated on a completely depleted bulk. This technology offers detection and an in-pixel amplification stage, while keeping low the power consumption. Under these conditions, thin sensors with small pixel size and low intrinsic noise are possible. In this article, an overview of the full system will be described, including the sensor, the front-end electronics and both the mechanical and thermal proposed solutions as well as the expected performance.  
  Address [Marinas, C; Vos, M] CSIC UVEG, IFIC, Inst Fis Corpuscular, Valencia, Spain, Email: Carlos.Marinas.Pardo@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295106500015 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 768  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva