toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Escudero, M.; Hooper, D.; Krnjaic, G.; Pierre, M. url  doi
openurl 
  Title Cosmology with a very light Lmu – Ltau gauge boson Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 071 - 29pp  
  Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Neutrino Physics  
  Abstract In this paper, we explore in detail the cosmological implications of an abelian L – L gauge extension of the Standard Model featuring a light and weakly coupled Z. Such a scenario is motivated by the longstanding approximate to 4 sigma discrepancy between the measured and predicted values of the muon's anomalous magnetic moment, (g – 2), as well as the tension between late and early time determinations of the Hubble constant. If sufficiently light, the Z population will decay to neutrinos, increasing the overall energy density of radiation and altering the expansion history of the early universe. We identify two distinct regions of parameter space in this model in which the Hubble tension can be significantly relaxed. The first of these is the previously identified region in which a approximate to 10 – 20 MeV Z reaches equilibrium in the early universe and then decays, heating the neutrino population and delaying the process of neutrino decoupling. For a coupling of g (-) similar or equal to (3 – 8) x 10(-4), such a particle can also explain the observed (g – 2) anomaly. In the second region, the Z is very light (mZ approximate to 1eV to MeV) and very weakly coupled (g (-) approximate to 10(-13) to 10(-9)). In this case, the Z population is produced through freeze-in, and decays to neutrinos after neutrino decoupling. Across large regions of parameter space, we predict a contribution to the energy density of radiation that can appreciably relax the reported Hubble tension, N-eff similar or equal to 0.2.  
  Address [Escudero, Miguel] Kings Coll London, Dept Phys, London WC2R 2LS, England, Email: miguel.escudero@kcl.ac.uk;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000461295500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3945  
Permanent link to this record
 

 
Author (up) Escudero, M.; Lopez-Pavon, J.; Rius, N.; Sandner, S. url  doi
openurl 
  Title Relaxing cosmological neutrino mass bounds with unstable neutrinos Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 119 - 44pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics  
  Abstract At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model (Lambda CDM), the Planck collaboration reports Sigma m(v)< 0.12 eV at 95 % CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe <tau>(nu) less than or similar to t(U), represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state nu (4) and a Goldstone boson phi, in which nu (i)-> nu (4)phi decays can loosen the neutrino mass bounds up to Sigma m(v) similar to 1 eV, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a U(1)(mu-tau) flavor symmetry, which are otherwise in tension with the current bound on Sigma m(v).  
  Address [Escudero, Miguel] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: miguel.escudero@kcl.ac.uk;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000601400500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4661  
Permanent link to this record
 

 
Author (up) Escudero, M.; Witte, S.J.; Rius, N. url  doi
openurl 
  Title The dispirited case of gauged U(1)(B-L) dark matter Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 190 - 30pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM  
  Abstract We explore the constraints and phenomenology of possibly the simplest scenario that could account at the same time for the active neutrino masses and the dark matter in the Universe within a gauged U(1)(B-L) symmetry, namely right-handed neutrino dark matter. We find that null searches from lepton and hadron colliders require dark matter with a mass below 900 GeV to annihilate through a resonance. Additionally, the very strong constraints from high-energy dilepton searches fully exclude the model for 150 GeV < m(z') < 3 TeV. We further explore the phenomenology in the high mass region (i.e. masses greater than or similar to O(1) TeV) and highlight theoretical arguments, related to the appearance of a Landau pole or an instability of the scalar potential, disfavoring large portions of this parameter space. Collectively, these considerations illustrate that a minimal extension of the Standard Model via a local U(1)(B-L) symmetry with a viable thermal dark matter candidate is difficult to achieve without fine-tuning. We conclude by discussing possible extensions of the model that relieve tension with collider constraints by reducing the gauge coupling required to produce the correct relic abundance.  
  Address [Escudero, Miguel] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: Miguel.Escudero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000443008100006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3706  
Permanent link to this record
 

 
Author (up) Fernandez-Martinez, E.; Lopez-Pavon, J.; Ota, T.; Rosauro-Alcaraz, S. url  doi
openurl 
  Title nu electroweak baryogenesis Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 063 - 28pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; CP viola- tion; Neutrino Physics  
  Abstract We investigate if the CP violation necessary for successful electroweak baryo- genesis may be sourced by the neutrino Yukawa couplings. In particular, we consider an electroweak scale Seesaw realization with sizable Yukawas where the new neutrino singlets form (pseudo)-Dirac pairs, as in the linear or inverse Seesaw variants. We find that the baryon asymmetry obtained strongly depends on how the neutrino masses vary within the bubble walls. Moreover, we also find that flavour effects critically impact the final asymmetry obtained and that, taking them into account, the observed value may be obtained in some regions of the parameter space. This source of CP violation naturally avoids the strong constraints from electric dipole moments and links the origin of the baryon asymmetry of the Universe with the mechanism underlying neutrino masses. Interestingly, the mixing of the active and heavy neutrinos needs to be sizable and could be probed at the LHC or future collider experiments.  
  Address [Fernandez-Martinez, E.; Ota, T.; Rosauro-Alcaraz, S.] Univ Autonoma Madrid, Dept Fis Teor, IFT UAM CSIC, Madrid 28049, Spain, Email: enrique.fernandez-martinez@uam.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000582727900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4582  
Permanent link to this record
 

 
Author (up) Fileviez Perez, P.; Murgui, C.; Plascencia, A.D. url  doi
openurl 
  Title Axion dark matter, proton decay and unification Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 091 - 18pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; GUT  
  Abstract We discuss the possibility to predict the QCD axion mass in the context of grand unified theories. We investigate the implementation of the DFSZ mechanism in the context of renormalizable SU(5) theories. In the simplest theory, the axion mass can be predicted with good precision in the range m(a) = (2-16) neV, and there is a strong correlation between the predictions for the axion mass and proton decay rates. In this context, we predict an upper bound for the proton decay channels with antineutrinos, tau(p -> K+(nu) over bar) less than or similar to 4 x 10(37) yr and tau(p -> pi(+)(nu) over bar) less than or similar to 2 x 10(36) yr. This theory can be considered as the minimal realistic grand unified theory with the DFSZ mechanism and it can be fully tested by proton decay and axion experiments.  
  Address [Fileviez Perez, Pavel; Plascencia, Alexis D.] Case Western Reserve Univ, Phys Dept, Cleveland, OH 44106 USA, Email: pxf112@case.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000588065200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4605  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva