toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Agostini, P. et al; Mandal, S. url  doi
openurl 
  Title The Large Hadron-Electron Collider at the HL-LHC Type Journal Article
  Year 2021 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume (down) 48 Issue 11 Pages 110501 - 364pp  
  Keywords deep-inelastic scattering; high-lumi LHC; QCD; Higgs; top and electroweak physics; nuclear physics; beyond Standard Model; energy-recovery-linac; accelerator physics  
  Abstract The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton-nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron-hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.  
  Address [Agostini, P.; Armesto, N.; Ferreiro, E. G.; Salgado, C. A.] Univ Santiago de Compostela USC, Santiago De Compostela, Spain, Email: britzger@mpp.mpg.de;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000731762500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5067  
Permanent link to this record
 

 
Author Beacham, J. et al; Martinez-Vidal, F. url  doi
openurl 
  Title Physics beyond colliders at CERN: beyond the Standard Model working group report Type Journal Article
  Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume (down) 47 Issue 1 Pages 010501 - 114pp  
  Keywords beyond standard Model; dark matter; dark sector; axions; particle physics; accelerators  
  Abstract The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10-20 years on the international landscape.  
  Address [Beacham, J.] Duke Univ, Durham, NC 27708 USA, Email: Gaia.Lanfranchi@lnf.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000521343200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4341  
Permanent link to this record
 

 
Author Mitsou, V.A. url  doi
openurl 
  Title Shedding light on dark matter at colliders Type Journal Article
  Year 2013 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume (down) 28 Issue 31 Pages 1330052 - 34pp  
  Keywords Dark matter; supersymmetry; extra dimensions; beyond Standard Model physics; Large Hadron Collider; ATLAS; CMS  
  Abstract Dark matter remains one of the most puzzling mysteries in Fundamental Physics of our times. Experiments at high-energy physics colliders are expected to shed light to its nature and determine its properties. This review focuses on recent searches for dark matter signatures at the Large Hadron Collider, also discussing related prospects in future e(+)e(-) colliders.  
  Address Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Paterna, Valencia, Spain, Email: vasiliki.mitsou@ific.uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000329057000002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1676  
Permanent link to this record
 

 
Author Chang, Q.; Li, X.Q.; Yang, Y.D. url  doi
openurl 
  Title The effects of a family nonuniversal Z ' boson on B -> pi pi decays Type Journal Article
  Year 2011 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume (down) 26 Issue 7-8 Pages 1273-1294  
  Keywords B-physics; rare decays; beyond Standard Model  
  Abstract Motivated by the measured large branching ratio of (B) over bar (0) --> pi(0)pi(0) (the so-called pi pi puzzle), we investigate the effects of a family nonuniversal Z' model on the tree-dominated B --> pi pi decays. We find that the Z' coupling parameter zeta(LR)(d) similar to 0.05 with a nontrivial new weak phase phi(L)(d) similar to -50 degrees, which is relevant to the Z' contributions to the QCD penguin sector Delta C-5, is needed to reconcile the observed discrepancy. Combined with the recent fitting results from B --> pi K, pi K* and rho K decays, the Z' parameter spaces are severely reduced but still not excluded entirely, implying that both the “pi pi” and “pi K” puzzles could be accommodated simultaneously within such a family nonuniversal Z' model.  
  Address [Chang, Qin; Li, Xin-Qiang] Henan Normal Univ, Dept Phys, Xinxiang 453007, Henan, Peoples R China, Email: changqin@htu.cn  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289175800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 595  
Permanent link to this record
 

 
Author Leitner, R.; Malinsky, M.; Roskovec, B.; Zhang, H. url  doi
openurl 
  Title Non-standard antineutrino interactions at Daya Bay Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (down) 12 Issue 12 Pages 001 - 26pp  
  Keywords Neutrino Physics; Beyond Standard Model  
  Abstract We study the prospects of pinning down the effects of non-standard antineutrino interactions in the source and in the detector at the Daya Bay neutrino facility. It is well known that if the non-standard interactions in the detection process are of the same type as those in the production, their net effect can be subsumed into a mere shift in the measured value of the leptonic mixing angle theta(13). Relaxing this assumption, the ratio of the antineutrino spectra measured by the Daya Bay far and near detectors is distorted in a characteristic way, and good fits based on the standard oscillation hypothesis are no longer viable. We show that, under certain conditions, three years of Daya Bay running can be sufficient to provide a clear hint of non-standard neutrino physics.  
  Address [Leitner, Rupert; Roskovec, Bedrich] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague 8, Czech Republic, Email: Rupert.Leitner@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298847200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 922  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva