toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chakraborty, S.; Gupta, A.; Vanvlasselaer, M. url  doi
openurl 
  Title Anomaly induced cooling of neutron stars: a Standard Model contribution Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 030 - 23pp  
  Keywords neutron stars; neutrino theory  
  Abstract (down) Young neutron stars cool via the emission of neutrinos from their core. A precise understanding of all the different processes producing neutrinos in the hot and degenerate matter is essential for assessing the cooling rate of such stars. The main Standard Model processes contributing to this effect are nu bremsstrahlung, mURCA among others. In this paper, we investigate another Standard Model process initiated by the Wess-Zumino-Witten term, leading to the emission of neutrino pairs via N gamma -> N nu nu over bar . We find that for proto-neutron stars, such processes with degenerate neutrons can be comparable and even dominate over the typical and well-known cooling mechanisms.  
  Address [Chakraborty, Sabyasachi] Indian Inst Technol, Dept Phys, Kanpur 208016, India, Email: sabyac@iitk.ac.in;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001116545800007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5872  
Permanent link to this record
 

 
Author NEXT Collaboration; Carcel, S.; Carrion, J.V.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture Type Journal Article
  Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 47 Issue 7 Pages 075001 - 17pp  
  Keywords gaseous detectors; scintillators; scintillation and light emission processes; solid; gas and liquid scintillators  
  Abstract (down) Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe-137 activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.  
  Address [Rogers, L.; Jones, B. J. P.; Laing, A.; Pingulkar, S.; Smithers, B.; Woodruff, K.; Byrnes, N.; Dingler, R.; McDonald, A. D.; Nygren, D. R.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: leslie.rogers@mavs.uta.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000537753800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4423  
Permanent link to this record
 

 
Author Farzan, Y.; Palomares-Ruiz, S. url  doi
openurl 
  Title Flavor of cosmic neutrinos preserved by ultralight dark matter Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 5 Pages 051702 - 8pp  
  Keywords  
  Abstract (down) Within the standard propagation scenario, the flavor ratios of high-energy cosmic neutrinos at neutrino telescopes are expected to be around the democratic benchmark resulting from hadronic sources, (1/3:1/3:1/3)(circle plus). We show how the coupling of neutrinos to an ultralight dark matter complex scalar field would induce an effective neutrino mass that could lead to adiabatic neutrino propagation. This would result in the preservation at the detector of the production flavor composition of neutrinos at sources. This effect could lead to flavor ratios at detectors well outside the range predicted by the standard scenario of averaged oscillations. We also present an electroweak-invariant model that would lead to the required effective interaction between neutrinos and dark matter.  
  Address [Farzan, Yasaman] Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, Iran, Email: yasaman@theory.ipm.ac.ir;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000461908100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3952  
Permanent link to this record
 

 
Author Husek, T.; Monsalvez-Pozo, K.; Portoles, J. url  doi
openurl 
  Title Lepton-flavour violation in hadronic tau decays and mu-tau conversion in nuclei Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 059 - 48pp  
  Keywords Beyond Standard Model; Effective Field Theories  
  Abstract (down) Within the Standard Model Effective Field Theory framework, with operators up to dimension 6, we perform a model-independent analysis of the lepton-flavour-violating processes involving tau leptons. Namely, we study hadronic tau decays and l-tau conversion in nuclei, with l = e, mu. Based on available experimental limits, we establish constraints on the Wilson coefficients of the operators contributing to these processes. Our work paves the way to extract the related information from Belle II and foreseen future experiments.  
  Address [Husek, Tomas; Monsalvez-Pozo, Kevin; Portoles, Jorge] Univ Valencia, CSIC, Inst Fis Corpuscular, Apt Correus 22085, E-46071 Valencia, Spain, Email: Tomas.Husek@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609870600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4686  
Permanent link to this record
 

 
Author Kpatcha, E.; Lara, I.; Lopez-Fogliani, D.E.; Muñoz, C.; Nagata, N.; Otono, H.; Ruiz de Austri, R. url  doi
openurl 
  Title Sampling the μnu SSM for displaced decays of the tau left sneutrino LSP at the LHC Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 11 Pages 934 - 18pp  
  Keywords  
  Abstract (down) Within the framework of the μnu SSM, a displaced dilepton signal is expected at the LHC from the decay of a tau left sneutrino as the lightest supersymmetric particle (LSP) with a mass in the range 45-100 GeV. We compare the predictions of this scenario with the ATLAS search for long-lived particles using displaced lepton pairs in pp collisions, considering an optimization of the trigger requirements by means of a high level trigger that exploits tracker information. The analysis is carried out in the general case of three families of right-handed neutrino superfields, where all the neutrinos get contributions to their masses at tree level. To analyze the parameter space, we sample the μnu SSM for a tau left sneutrino LSP with proper decay length c tau>0.1mm using a likelihood data-driven method, and paying special attention to reproduce the current experimental data on neutrino and Higgs physics, as well as flavor observables. The sneutrino is special in the μnu SSM since its couplings have to be chosen so that the neutrino oscillation data are reproduced. We find that important regions of the parameter space can be probed at the LHC run 3.  
  Address [Kpatcha, Essodjolo; Lara, Inaki; Munoz, Carlos] Univ Autonoma Madrid, Dept Fis Teor, Campus Cantoblanco, E-28049 Madrid, Spain, Email: kpatcha.essodjolo@uam.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000497763100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4204  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva