toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Ahn, C.P. et al; de Putter, R. url  doi
openurl 
  Title The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey Type Journal Article
  Year 2012 Publication Astrophysical Journal Supplement Series Abbreviated Journal Astrophys. J. Suppl. Ser.  
  Volume 203 Issue 2 Pages 21 - 13pp  
  Keywords atlases; catalogs; surveys  
  Abstract The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z similar to 0.52), 102,100 new quasar spectra (median z similar to 2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T-eff < 5000 K and in metallicity estimates for stars with [Fe/H] > -0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SEGUE-2. The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the APOGEE along with another year of data from BOSS, followed by the final SDSS-III data release in 2014 December.  
  Address [Alexandroff, Rachael; Blake, Cullen H.; Carr, Michael A.; Gunn, James E.; Knapp, Gillian R.; Loomis, Craig P.; Lupton, Robert H.; Mandelbaum, Rachel; Parihar, Prachi; Pattarakijwanich, Petchara; Strauss, Michael A.; Zinn, Joel C.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0067-0049 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000312100500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1273  
Permanent link to this record
 

 
Author (up) Anderson, L. et al; de Putter, R.; Mena, O. url  doi
openurl 
  Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 427 Issue 4 Pages 3435-3467  
  Keywords cosmological parameters; cosmology: observations; dark energy; distance scale; large-scale structure of Universe  
  Abstract We present measurements of galaxy clustering from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains 264 283 massive galaxies covering 3275 square degrees with an effective redshift z = 0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance Lambda CDM cosmological model, this sample covers an effective volume of 2.2 Gpc(3), and represents the largest sample of the Universe ever surveyed at this density, (n) over bar approximate to 3 x 10(-4) h(-3) Mpc(3). We measure the angle-averaged galaxy correlation function and power spectrum, including density-field reconstruction of the baryon acoustic oscillation (BAO) feature. The acoustic features are detected at a significance of 5 sigma in both the correlation function and power spectrum. Combining with the SDSS-II luminous red galaxy sample, the detection significance increases to 6.7 sigma. Fitting for the position of the acoustic features measures the distance to z = 0.57 relative to the sound horizon D-V/r(s) = 13.67 +/ 0.22 at z = 0.57. Assuming a fiducial sound horizon of 153.19 Mpc, which matches cosmic microwave background constraints, this corresponds to a distance D-V (z = 0.57) = 2094 +/- 34 Mpc. At 1.7 per cent, this is the most precise distance constraint ever obtained from a galaxy survey. We place this result alongside previous BAO measurements in a cosmological distance ladder and find excellent agreement with the current supernova measurements. We use these distance measurements to constrain various cosmological models, finding continuing support for a flat Universe with a cosmological constant.  
  Address [Anderson, Lauren] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: nikhil.padmanabhan@yale.edu;  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314421000014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1319  
Permanent link to this record
 

 
Author (up) Calabrese, E.; de Putter, R.; Huterer, D.; Linder, E.V.; Melchiorri, A. url  doi
openurl 
  Title Future CMB constraints on early, cold, or stressed dark energy Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 2 Pages 023011 - 11pp  
  Keywords  
  Abstract We investigate future constraints on early dark energy (EDE) achievable by the Planck and CMBPol experiments, including cosmic microwave background (CMB) lensing. For the dark energy, we include the possibility of clustering through a sound speed c(s)(2) < 1 (cold dark energy) and anisotropic stresses parametrized with a viscosity parameter c(vis)(2). We discuss the degeneracies between cosmological parameters and EDE parameters. In particular we show that the presence of anisotropic stresses in EDE models can substantially undermine the determination of the EDE sound speed parameter c(s)(2). The constraints on EDE primordial energy density are however unaffected. We also calculate the future CMB constraints on neutrino masses and find that they are weakened by a factor of 2 when allowing for the presence of EDE, and highly biased if it is incorrectly ignored.  
  Address [Calabrese, Erminia; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286803300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 563  
Permanent link to this record
 

 
Author (up) Cervantes-Cota, J.L.; de Putter, R.; Linder, E.V. url  doi
openurl 
  Title Induced gravity and the attractor dynamics of dark energy/dark matter Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 019 - 20pp  
  Keywords modified gravity; dark energy theory  
  Abstract Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity.  
  Address [Cervantes-Cota, Jorge L.] Inst Nacl Invest Nucl, Dept Fis, Mexico City 11801, DF, Mexico, Email: jorge.cervantes@inin.gob.mx  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286930700019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 533  
Permanent link to this record
 

 
Author (up) Das, S.; de Putter, R.; Linder, E.V.; Nakajima, R. url  doi
openurl 
  Title Weak lensing cosmology beyond Lambda CDM Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 23pp  
  Keywords dark energy experiments; cosmological parameters from LSS; weak gravitational lensing; dark energy theory  
  Abstract Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of physics affecting growth – dynamical dark energy, extended gravity, neutrino masses, and spatial curvature – we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, intrinsic alignments, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas tor, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area on the cosmological constraints in the beyond-ACDM parameter space. Finally, we examine the robustness of results for different fiducial cosmologies.  
  Address [Das, Sudeep; Linder, Eric V.; Nakajima, Reiko] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA, Email: sdas@hep.anl.gov;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310833100011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1228  
Permanent link to this record
 

 
Author (up) Dawson, K.S. et al; de Putter, R.; Mena, O. url  doi
openurl 
  Title The Baryon Oscillation Spectroscopic Survey of SDSS-III Type Journal Article
  Year 2013 Publication Astronomical Journal Abbreviated Journal Astron. J.  
  Volume 145 Issue 1 Pages 10 - 41pp  
  Keywords cosmology: observations; surveys  
  Abstract The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg(2) to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Ly alpha forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Ly alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance d(A) to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Ly alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D-A(z) and H-1(z) parameters to an accuracy of 1.9% at z similar to 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.  
  Address [Dawson, Kyle S.; Ahn, Christopher P.; Bolton, Adam S.; Brown, Peter J.; Brownstein, Joel R.; Harris, David W.; Montero-Dorta, Antonio D.; Olmstead, Matthew D.; Shu, Yiping; Zheng, Zheng] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA, Email: kdawson@astro.utah.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6256 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000312251100010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1266  
Permanent link to this record
 

 
Author (up) de Putter, R.; Mena, O.; Giusarma, E.; Ho, S.; Cuesta, A.; Seo, H.J.; Ross, A.J.; White, M.; Bizyaev, D.; Brewington, H.; Kirkby, D.; Malanushenko, E.; Malanushenko, V.; Oravetz, D.; Pan, K.K.; Percival, W.J.; Ross, N.P.; Schneider, D.P.; Shelden, A.; Simmons, A.; Snedden, S. url  doi
openurl 
  Title New Neutrino Mass Bounds from SDSS-III Data Release 8 Photometric Luminous Galaxies Type Journal Article
  Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 761 Issue 1 Pages 12 - 12pp  
  Keywords cosmological parameters; cosmology: observations; large-scale structure of universe  
  Abstract We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg(2), thus probing a volume of 3 h(-3) Gpc(3) and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses Sigma m nu < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call “CMASS,” with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range of 30 < l < 200 in order to minimize nonlinearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs and find that this model causes a small (similar to 1 sigma-1.5 sigma) bias in Omega(DM)h(2). For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot-noise-like free parameters. In this conservative case, the bounds are significantly weakened, e. g., Sigma m(nu) < 0.38 eV (95% CL) for WMAP+HST+CMASS (l(max) = 200). We also study the dependence of the neutrino bound on the multipole range (l(max) = 150 versus l(max) = 200) and on which combination of data sets is included as a prior. The addition of supernova and/or baryon acoustic oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. A companion paper describes the construction of the angular power spectra in detail and derives constraints on a general cosmological model, including the dark energy equation of state w and the spatial curvature Omega(K), while a second companion paper presents a measurement of the scale of baryon acoustic oscillations from the same data set. All three works are based on the catalog by Ross et al.  
  Address [de Putter, Roland] Univ Barcelona, ICC, IEEC UB, E-08028 Barcelona, Spain  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311748800012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1262  
Permanent link to this record
 

 
Author (up) de Putter, R.; Takada, M. url  doi
openurl 
  Title Halo-galaxy lensing: A full sky approach Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 10 Pages 103522 - 9pp  
  Keywords  
  Abstract The halo-galaxy lensing correlation function or the average tangential shear profile over sampled halos is a very powerful means of measuring the halo masses, the mass profile, and the halo-mass correlation function of very large separations in the linear regime. We reformulate the halo-galaxy lensing correlation in harmonic space. We find that, counterintuitively, errors in the conventionally used flat-sky approximation remain at a percent level even at very small angles. The errors increase at larger angles and for lensing halos at lower redshifts: the effect is at a few percent level at the baryonic acoustic oscillation scales for lensing halos of z similar to 0.2, and comparable with the effect of primordial non-Gaussianity with f(NL) similar to 10 at large separations. Our results allow one to readily estimate/correct for the full-sky effect on a high-precision measurement of the average shear profile available from upcoming wide-area lensing surveys.  
  Address [de Putter, Roland] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284307100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 254  
Permanent link to this record
 

 
Author (up) de Putter, R.; Verde, L.; Jimenez, R. url  doi
openurl 
  Title Testing LTB void models without the cosmic microwave background or large scale structure: new constraints from galaxy ages Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 047 - 22pp  
  Keywords dark energy experiments; dark energy theory; galaxy evolution  
  Abstract We present new observational constraints on inhomogenous models based on observables independent of the CMB and large-scale structure. Using Bayesian evidence we find very strong evidence for homogeneous LCDM model, thus disfavouring inhomogeneous models. Our new constraints are based on quantities independent of the growth of perturbations and rely on cosmic clocks based on atomic physics and on the local density of matter.  
  Address [de Putter, Roland; Verde, Licia; Jimenez, Raul] Univ Barcelona IEEC UB, ICC, Barcelona 08028, Spain, Email: rdeputter@icc.ub.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315576400047 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1362  
Permanent link to this record
 

 
Author (up) de Putter, R.; Wagner, C.; Mena, O.; Verde, L.; Percival, W.J. url  doi
openurl 
  Title Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 019 - 31pp  
  Keywords galaxy clustering; power spectrum; cosmological simulations; dark matter simulations  
  Abstract Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement for cosmological parameter estimation from large scale structure surveys. In order to minimize reliance on computationally expensive mock catalogs, it is important to have a solid analytic understanding of the different components that make up a covariance matrix. Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This beat coupling effect has been derived analytically in perturbation theory and while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated average density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this local average effect and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only similar to 10% of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes thereof to study cases without beat coupling, with beat coupling and with both beat coupling and the local average effect. For the variances, we find excellent agreement with the analytic expressions for k < 0.2 hMpc(-1) at z = 0.5, while the correlation coefficients agree to beyond k = 0.4 hMpc(-1). As expected, the range of agreement increases towards higher redshift and decreases slightly towards z = 0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey geometry and confirming its validity using simulations. This may be useful as a stepping stone towards building an actual galaxy (or other tracer's) power spectrum covariance matrix.  
  Address [de Putter, Roland; Wagner, Christian; Verde, Lica] Univ Barcelona IEEC UB, ICC, Barcelona 08028, Spain, Email: rdeputter@berkeley.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303665000019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1016  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva