toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Hernandez, E.; Vijande, J.; Valcarce, A.; Richard, J.M. url  doi
openurl 
  Title Spectroscopy, lifetime and decay modes of the T-bb(-) tetraquark Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 800 Issue Pages 135073 - 9pp  
  Keywords  
  Abstract We present the first full-fledged study of the flavor-exotic isoscalar T-bb(-) equivalent to bb (u) over bar(d) over bar tetraquark with spin and parity J(P) = 1(+). We report accurate solutions of the four-body problem in a quark model, characterizing the structure of the state as a function of the ratio M-Q/m(q) of the heavy to light quark masses. For such a standard constituent model, T-bb(-) lies approximately 150 MeV below the strong decay threshold B- (B) over bar*(0) and 105 MeV below the electromagnetic decay threshold B- (B) over bar (0)gamma. We evaluate the lifetime of T-bb(-), identifying the promising decay modes where the tetraquark might be looked for in future experiments. Its total decay width is Gamma approximate to 87 x 10(-15) GeV and therefore its lifetime tau approximate to 7.6 ps. The promising final states are B*(-) D*(+) l (v) over bar (l) and (B) over bar*(0) l (v) over bar (l) among the semileptonic decays, and B*(-) D*(+) D-s*(-), (B) over bar*(0) D*(0) D-s*(-), and B*(-) D*(+) rho(-) among the nonleptonic ones. The semileptonic decay to the isoscalar J(P) = 0(+) tetraquark T-bc(0) is also relevant but it is not found to be dominant. There is a broad consensus about the existence of this tetraquark, and its detection will validate our understanding of the low-energy realizations of Quantum Chromodynamics (QCD) in the multiquark sector.  
  Address [Hernandez, E.; Valcarce, A.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: gajatee@usal.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000503832500055 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4240  
Permanent link to this record
 

 
Author (up) Hueso-Gonzalez, F.; Ballester, F.; Perez-Calatayud, J.; Siebert, F.A.; Vijande, J. doi  openurl
  Title Towards clinical application of RayStretch for heterogeneity corrections in LDR permanent I-125 prostate brachytherapy Type Journal Article
  Year 2017 Publication Brachytherapy Abbreviated Journal Brachytherapy  
  Volume 16 Issue 3 Pages 616-623  
  Keywords Brachytherapy; Low-dose rate; Heterogeneities; Prostate; Calcifications; Dosimetry  
  Abstract PURPOSE: RayStretch is a simple algorithm proposed for heterogeneity corrections in low-dose-rate brachytherapy. It is built on top of TG-43 consensus data, and it has been validated with Monte Carlo (MC) simulations. In this study, we take a real clinical prostate implant with 71 1251 seeds as reference and we apply RayStretch to analyze its performance in worst-case scenarios. METHODS AND MATERIALS: To do so, we design two cases where large calcifications are located in the prostate lobules. RayStretch resilience under various calcification density values is also explored. Comparisons against MC calculations are performed. RESULTS: Dose volume histogram related parameters like prostate D-90, rectum D-2cc, or urethra D-10 obtained with RayStretch agree within a few percent with the detailed MC results for all cases considered. CONCLUSIONS: The robustness and compatibility of RayStretch with commercial treatment planning systems indicate its applicability in clinical practice for dosimetric corrections in prostate calcifications. Its use during intraoperative ultrasound planning is foreseen.  
  Address [Hueso-Gonzalez, Fernando] Target Systemelekt GmbH, Wuppertal, Germany, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1538-4721 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402231600019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3151  
Permanent link to this record
 

 
Author (up) Hueso-Gonzalez, F.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Siebert, F.A. doi  openurl
  Title A simple analytical method for heterogeneity corrections in low dose rate prostate brachytherapy Type Journal Article
  Year 2015 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 60 Issue 14 Pages 5455-5469  
  Keywords brachytherapy; low dose rate; heterogeneities; prostate; calcifications  
  Abstract In low energy brachytherapy, the presence of tissue heterogeneities contributes significantly to the discrepancies observed between treatment plan and delivered dose. In this work, we present a simplified analytical dose calculation algorithm for heterogeneous tissue. We compare it with Monte Carlo computations and assess its suitability for integration in clinical treatment planning systems. The algorithm, named as RayStretch, is based on the classic equivalent path length method and TG-43 reference data. Analytical and Monte Carlo dose calculations using Penelope2008 are compared for a benchmark case: a prostate patient with calcifications. The results show a remarkable agreement between simulation and algorithm, the latter having, in addition, a high calculation speed. The proposed analytical model is compatible with clinical real-time treatment planning systems based on TG-43 consensus datasets for improving dose calculation and treatment quality in heterogeneous tissue. Moreover, the algorithm is applicable for any type of heterogeneities.  
  Address [Hueso-Gonzalez, Fernando; Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: Javier.Vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000357620400009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2296  
Permanent link to this record
 

 
Author (up) Ibanez-Rosello, B.; Bautista-Ballesteros, J.A.; Candela-Juan, C.; Villaescusa, J.I.; Ballester, F.; Vijande, J.; Perez-Calatayud, J. doi  openurl
  Title Evaluation of the shielding in a treatment room with an electronic brachytherapy unit Type Journal Article
  Year 2017 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 37 Issue 2 Pages N5-N12  
  Keywords Esteya; electronic brachytherapy; shielding; radiation protection  
  Abstract Esteya (R) (Elekta Brachytherapy, Veenendaal, The Netherlands) is an electronic brachytherapy (eBT) system based on a 69.5 kVp x-ray source and a set of collimators of 1 to 3 cm in diameter, used for treating non-melanoma skin cancer lesions. This study aims to estimate room shielding requirements for this unit. The non-primary (scattered and leakage) ambient dose equivalent rates were measured with a Berthold LB-133 monitor (Berthold Technologies, Bad Wildbad, Germany). The latter ranges from 17 mSv h(-1) at 0.25 m distance from the x-ray source to 0.1 mSv h(-1) at 2.5 m. The necessary room shielding was then estimated following US and some European guidelines. The room shielding for all barriers considered was below 2 mmPb. The dose to a companion who, exceptionally, would stay with the patient during all treatment was estimated to be below 1 mSv if a leaded apron is used. In conclusion, Esteya shielding requirements are minimal.  
  Address [Ibanez-Rosello, Blanca; Ignacio Villaescusa, Juan] La Fe Univ, Radioprotect Dept, E-46026 Valencia, Spain, Email: blanca.ibanez.rosello@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413778600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3344  
Permanent link to this record
 

 
Author (up) Ma, Y.Z.; Vijande, J.; Ballester, F.; Tedgren, A.C.; Granero, D.; Haworth, A.; Mourtada, F.; Fonseca, G.P.; Zourari, K.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; Sloboda, R.S.; Smith, R.; Chamberland, M.J.P.; Thomson, R.M.; Verhaegen, F.; Beaulieu, L. doi  openurl
  Title A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate Ir-192 brachytherapy Type Journal Article
  Year 2017 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 44 Issue 11 Pages 5961-5976  
  Keywords Ir-192; HDR brachytherapy; model based dose calculation; Monte Carlo methods; shielded applicator; TG-186  
  Abstract PurposeA joint working group was created by the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) with the charge, among others, to develop a set of well-defined test case plans and perform calculations and comparisons with model-based dose calculation algorithms (MBDCAs). Its main goal is to facilitate a smooth transition from the AAPM Task Group No. 43 (TG-43) dose calculation formalism, widely being used in clinical practice for brachytherapy, to the one proposed by Task Group No. 186 (TG-186) for MBDCAs. To do so, in this work a hypothetical, generic high-dose rate (HDR) Ir-192 shielded applicator has been designed and benchmarked. MethodsA generic HDR Ir-192 shielded applicator was designed based on three commercially available gynecological applicators as well as a virtual cubic water phantom that can be imported into any DICOM-RT compatible treatment planning system (TPS). The absorbed dose distribution around the applicator with the TG-186 Ir-192 source located at one dwell position at its center was computed using two commercial TPSs incorporating MBDCAs (Oncentra((R)) Brachy with Advanced Collapsed-cone Engine, ACE, and BrachyVision ACUROS) and state-of-the-art Monte Carlo (MC) codes, including ALGEBRA, BrachyDose, egs_brachy, Geant4, MCNP6, and Penelope2008. TPS-based volumetric dose distributions for the previously reported source centered in water and source displaced test cases, and the new source centered in applicator test case, were analyzed here using the MCNP6 dose distribution as a reference. Volumetric dose comparisons of TPS results against results for the other MC codes were also performed. Distributions of local and global dose difference ratios are reported. ResultsThe local dose differences among MC codes are comparable to the statistical uncertainties of the reference datasets for the source centered in water and source displaced test cases and for the clinically relevant part of the unshielded volume in the source centered in applicator case. Larger local differences appear in the shielded volume or at large distances. Considering clinically relevant regions, global dose differences are smaller than the local ones. The most disadvantageous case for the MBDCAs is the one including the shielded applicator. In this case, ACUROS agrees with MC within [-4.2%, +4.2%] for the majority of voxels (95%) while presenting dose differences within [-0.12%, +0.12%] of the dose at a clinically relevant reference point. For ACE, 95% of the total volume presents differences with respect to MC in the range [-1.7%, +0.4%] of the dose at the reference point. ConclusionsThe combination of the generic source and generic shielded applicator, together with the previously developed test cases and reference datasets (available in the Brachytherapy Source Registry), lay a solid foundation in supporting uniform commissioning procedures and direct comparisons among treatment planning systems for HDR Ir-192 brachytherapy.  
  Address [Ma, Yunzhi; Beaulieu, Luc] CHU Quebec, Dept Radio Oncol & Axe Oncol, Ctr Rech, Quebec City, PQ G1R 2J6, Canada, Email: yunzhi.Ma@crchuq.ulaval.ca  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000414970800039 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3370  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva