Records |
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title  |
Searching for solar KDAR with DUNE |
Type |
Journal Article |
Year |
2021 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
Volume |
10 |
Issue |
10 |
Pages |
065 - 28pp |
Keywords |
dark matter theory; neutrino detectors |
Abstract |
The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions. |
Address |
[Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA |
Corporate Author |
|
Thesis |
|
Publisher |
IOP Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000758221400019 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5141 |
Permanent link to this record |
|
|
|
Author |
Kosmas, T.S.; Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. |
Title  |
Sensitivities to neutrino electromagnetic properties at the TEXONO experiment |
Type |
Journal Article |
Year |
2015 |
Publication |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
750 |
Issue |
|
Pages |
459-465 |
Keywords |
Reactor neutrinos; Coherent elastic neutrino-nucleus scattering (CENNS); Weak mixing angle; Neutrino magnetic moment; Neutrino charge radius; Quenching factor |
Abstract |
The possibility of measuring neutral-current coherent elastic neutrino nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies. |
Address |
[Kosmas, T. S.; Papoulias, D. K.] Univ Ioannina, Div Theoret Phys, GR-45110 Ioannina, Greece, Email: hkosmas@uoi.gr; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000364250600075 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
2472 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title  |
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network |
Type |
Journal Article |
Year |
2022 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
82 |
Issue |
10 |
Pages |
903 - 19pp |
Keywords |
|
Abstract |
Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation. |
Address |
[Isenhower, L.] Abilenexs Christian Univ, Abilene, TX 79601 USA, Email: tjyang@fnal.gov |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000866503200001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5386 |
Permanent link to this record |
|
|
|
Author |
De Romeri, V.; Martinez-Mirave, P.; Tortola, M. |
Title  |
Signatures of primordial black hole dark matter at DUNE and THEIA |
Type |
Journal Article |
Year |
2021 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
Volume |
10 |
Issue |
10 |
Pages |
051 - 21pp |
Keywords |
dark matter theory; neutrino experiments; primordial black holes |
Abstract |
Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the 10(15)-10(17) g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments. We focus on two next generation facilities: the Deep Underground Neutrino Experiment (DUNE) and THEIA. We simulate the expected event spectra at both experiments assuming different PBH mass distributions and spins, and we extract the expected 95% C.L. sensitivities to these scenarios. Our analysis shows that future neutrino experiments like DUNE and THEIA will be able to set competitive constraints on PBH dark matter, thus providing complementary probes in a part of the PBH parameter space currently constrained mainly by photon data. |
Address |
[De Romeri, Valentina] Univ Valencia, Dept Fis Teor, Paterna 46980, Spain, Email: deromeri@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
IOP Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000758221400007 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
no |
Call Number |
IFIC @ pastor @ |
Serial |
5140 |
Permanent link to this record |
|
|
|
Author |
de Salas, P.F.; Forero, D.V.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title  |
Status of neutrino oscillations 2018: 3 sigma hint for normal mass ordering and improved CP sensitivity |
Type |
Journal Article |
Year |
2018 |
Publication |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
782 |
Issue |
|
Pages |
633-640 |
Keywords |
Neutrino mass and mixing; Neutrino oscillation; Solar and atmospheric neutrinos; Reactor and accelerator neutrinos; Neutrino telescopes |
Abstract |
We present a new global fit of neutrino oscillation parameters within the simplest three-neutrino picture, including new data which appeared since our previous analysis[1]. In this update we include new long-baseline neutrino data involving the antineutrino channel in T2K, as well as new data in the neutrino channel, data from NO nu A, as well as new reactor data, such as the Daya Bay 1230 days electron antineutrino disappearance spectrum data and the 1500 live days prompt spectrum from RENO, as well as new Double Chooz data. We also include atmospheric neutrino data from the IceCube DeepCore and ANTARES neutrino telescopes and from Super-Kamiokande. Finally, we also update our solar oscillation analysis by including the 2055-day day/night spectrum from the fourth phase of the Super-Kamiokande experiment. With the new data we find a preference for the atmospheric angle in the upper octant for both neutrino mass orderings, with maximal mixing allowed at Delta chi(2)= 1.6 (3.2) for normal (inverted) ordering. We also obtain a strong preference for values of the CP phase delta in the range [pi, 2 pi], excluding values close to pi/2at more than 4 sigma. More remarkably, our global analysis shows a hint in favorof the normal mass ordering over the inverted one at more than 3 sigma. We discuss in detail the status of the mass ordering, CP violation and octant sensitivities, analyzing the interplay among the different neutrino data samples. |
Address |
[de Salas, P. F.; Ternes, C. A.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000438486900094 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
3665 |
Permanent link to this record |
|
|
|
Author |
Tortola, M. |
Title  |
Status of three-neutrino oscillation parameters |
Type |
Journal Article |
Year |
2013 |
Publication |
Fortschritte der Physik-Progress of Physics |
Abbreviated Journal |
Fortschritte Phys.-Prog. Phys. |
Volume |
61 |
Issue |
4-5 |
Pages |
427-440 |
Keywords |
Neutrino mass and mixing; neutrino oscillations; solar and atmospheric neutrinos; reactor and accelerator neutrinos |
Abstract |
Here we review the current status of global fits to neutrino oscillation data within the three-flavour framework. In our analysis we include the most recent data from solar and atmospheric neutrino experiments as well as the latest results from the long-baseline accelerator neutrino experiments and the recent measurements of reactor neutrino disappearance reported by Double Chooz, Daya Bay and RENO. We present updated determinations for the two neutrino mass splittings and the three mixing angles responsible for neutrino oscillations that, for the first time, have all been measured with 1 sigma accuracies ranging from 3 to 15%. A weak sensitivity for the CP violating phase is also reported from the global analysis. |
Address |
Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Valencia 46071, Spain, Email: mariam@ific.uv.es |
Corporate Author |
|
Thesis |
|
Publisher |
Wiley-V C H Verlag Gmbh |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0015-8208 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000317019900005 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
no |
Call Number |
IFIC @ pastor @ |
Serial |
1411 |
Permanent link to this record |
|
|
|
Author |
Barenboim, G.; Martinez-Mirave, P.; Ternes, C.A.; Tortola, M. |
Title  |
Sterile neutrinos with altered dispersion relations revisited |
Type |
Journal Article |
Year |
2020 |
Publication |
Journal of High Energy Physics |
Abbreviated Journal |
J. High Energy Phys. |
Volume |
03 |
Issue |
3 |
Pages |
070 - 18pp |
Keywords |
Beyond Standard Model; Neutrino Physics |
Abstract |
In this paper we investigate neutrino oscillations with altered dispersion relations in the presence of sterile neutrinos. Modified dispersion relations represent an agnostic way to parameterize new physics. Models of this type have been suggested to explain global neutrino oscillation data, including deviations from the standard three-neutrino paradigm as observed by a few experiments. We show that, unfortunately, in this type of models new tensions arise turning them incompatible with global data. |
Address |
[Barenboim, G.; Martinez-Mirave, P.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: Gabriela.Barenboim@uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1029-8479 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000520538500003 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
no |
Call Number |
IFIC @ pastor @ |
Serial |
4333 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title  |
Supernova neutrino burst detection with the Deep Underground Neutrino Experiment |
Type |
Journal Article |
Year |
2021 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
81 |
Issue |
5 |
Pages |
423 - 26pp |
Keywords |
|
Abstract |
The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the nu(e) spectral parameters of the neutrino burst will be considered. |
Address |
[Andreopoulos, C.; Decowski, M. P.; De Jong, P.; Filthaut, F.; Miedema, T.; Weber, A.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: kate.scholberg@duke.edu |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000661101700001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4859 |
Permanent link to this record |
|
|
|
Author |
Gerbino, M. et al; Martinez-Mirave, P.; Mena, O.; Tortola, M.; Valle, J.W. . |
Title  |
Synergy between cosmological and laboratory searches in neutrino physics |
Type |
Journal Article |
Year |
2023 |
Publication |
Physics of the Dark Universe |
Abbreviated Journal |
Phys. Dark Universe |
Volume |
42 |
Issue |
|
Pages |
101333 - 36pp |
Keywords |
Neutrinos; Cosmology; Neutrino phenomenology |
Abstract |
The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Upcoming cosmological probes will measure the energy density of relativistic particles with higher precision, but could also start probing other properties of the neutrino spectra. When convolved with results from terrestrial experiments, cosmology can become even more acute at probing new physics related to neutrinos or even Beyond the Standard Model (BSM). Any discordance between laboratory and cosmological data sets may reveal new BSM physics and/or suggest alternative models of cosmology. We give examples of the intersection between terrestrial and cosmological probes in the neutrino sector, and briefly discuss the possibilities of what different laboratory experiments may see in conjunction with cosmological observatories. |
Address |
[Gerbino, Martina; Lattanzi, Massimiliano; Brinckmann, Thejs] INFN, Sez Ferrara, I-44122 Ferrara, Italy, Email: gerbinom@fe.infn.it; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001112368600001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5854 |
Permanent link to this record |
|
|
|
Author |
Srivastava, R.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title  |
Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment |
Type |
Journal Article |
Year |
2018 |
Publication |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
778 |
Issue |
|
Pages |
459-463 |
Keywords |
|
Abstract |
Oscillation studies play a central role in elucidating at least some aspects of the flavor problem. Here we examine the status of the predictions of a lepton quarticity flavor theory of neutrino oscillations against the existing global sample of oscillation data. By performing quantitative simulations we also determine the potential of the upcoming DUNE experiment in narrowing down the currently ill-measured oscillation parameters theta(23) and delta(CP). We present the expected improved sensitivity on these parameters for different assumptions. |
Address |
[Srivastava, Rahul; Ternes, Christoph A.; Tortola, Mariam; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: rahulsri@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000426436700063 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
no |
Call Number |
IFIC @ pastor @ |
Serial |
3512 |
Permanent link to this record |