Records |
Author |
Cañas, B.C.; Miranda, O.G.; Parada, A.; Tortola, M.; Valle, J.W.F. |
Title |
Updating neutrino magnetic moment constraints |
Type |
Journal Article |
Year |
2016 |
Publication  |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
753 |
Issue |
|
Pages |
191-198 |
Keywords |
|
Abstract |
In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Lambda(i) and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 x 10(-11) mu(B) at 90% C.L. This corresponds to the individual transition magnetic moment constraints: vertical bar Lambda(1)vertical bar <= 5.6 x10(-11)mu(B), vertical bar Lambda(2)vertical bar <= 4.0 x10(-11)mu(B), and vertical bar Lambda(3)vertical bar <= 3.1 x10(-11)mu B(90% C. L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties. |
Address |
[Canas, B. C.; Miranda, O. G.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: bcorduz@fis.cinvestav.mx; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000368783600029 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
2551 |
Permanent link to this record |
|
|
|
Author |
Cañas, B.C.; Garces, E.A.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. |
Title |
The weak mixing angle from low energy neutrino measurements: A global update |
Type |
Journal Article |
Year |
2016 |
Publication  |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
761 |
Issue |
|
Pages |
450-455 |
Keywords |
|
Abstract |
Taking into account recent theoretical and experimental inputs on reactor fluxes we reconsider the determination of the weak mixing angle from low energy experiments. We perform a global analysis to all available neutrino-electron scattering data from reactor antineutrino experiments, obtaining sin(2) theta(W) = 0.252 +/- 0.030. We discuss the impact of the new theoretical prediction for the neutrino spectrum, the new measurement of the reactor antineutrino spectrum by the Daya Bay collaboration, as well as the effect of radiative corrections. We also reanalyze the measurements of the nu(e) – e cross section at accelerator experiments including radiative corrections. By combining reactor and accelerator data we obtain an improved determination for the weak mixing angle, sin(2) theta(W) = 0.254 +/- 0.024. |
Address |
[Canas, B. C.; Miranda, O. G.] Ctr Invest Estudios Avanzados IPN, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: bcorduz@fis.cinvestav.mx; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000384469900064 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
2940 |
Permanent link to this record |
|
|
|
Author |
Srivastava, R.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment |
Type |
Journal Article |
Year |
2018 |
Publication  |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
778 |
Issue |
|
Pages |
459-463 |
Keywords |
|
Abstract |
Oscillation studies play a central role in elucidating at least some aspects of the flavor problem. Here we examine the status of the predictions of a lepton quarticity flavor theory of neutrino oscillations against the existing global sample of oscillation data. By performing quantitative simulations we also determine the potential of the upcoming DUNE experiment in narrowing down the currently ill-measured oscillation parameters theta(23) and delta(CP). We present the expected improved sensitivity on these parameters for different assumptions. |
Address |
[Srivastava, Rahul; Ternes, Christoph A.; Tortola, Mariam; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: rahulsri@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000426436700063 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
no |
Call Number |
IFIC @ pastor @ |
Serial |
3512 |
Permanent link to this record |
|
|
|
Author |
Barenboim, G.; Ternes, C.A.; Tortola, M. |
Title |
Neutrinos, DUNE and the world best bound on CPT invariance |
Type |
Journal Article |
Year |
2018 |
Publication  |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
780 |
Issue |
|
Pages |
631-637 |
Keywords |
Neutrino mass and mixing; Neutrino oscillation; CPT |
Abstract |
CPT symmetry, the combination of Charge Conjugation, Parity and Time reversal, is a cornerstone of our model building strategy and therefore the repercussions of its potential violation will severely threaten the most extended tool we currently use to describe physics, i.e. local relativistic quantum fields. However, limits on its conservation from the Kaon system look indeed imposing. In this work we will show that neutrino oscillation experiments can improve this limit by several orders of magnitude and therefore are an ideal tool to explore the foundations of our approach to Nature. Strictly speaking testing CPT violation would require an explicit model for how CPT is broken and its effects on physics. Instead, what is presented in this paper is a test of one of the predictions of CPT conservation, i.e., the same mass and mixing parameters in neutrinos and antineutrinos. In order to do that we calculate the current CPT bound on all the neutrino mixing parameters and study the sensitivity of the DUNE experiment to such an observable. After deriving the most updated bound on CPT from neutrino oscillation data, we show that, if the recent T2K results turn out to be the true values of neutrino and antineutrino oscillations, DUNE would measure the fallout of CPT conservation at more than 3 sigma. Then, we study the sensitivity of the experiment to measure CPT invariance in general, finding that DUNE will be able to improve the current bounds on Delta(Delta m(31)(2)) by at least one order of magnitude. We also study the sensitivity to the other oscillation parameters. Finally we show that, if CPT is violated in nature, combining neutrino with antineutrino data in oscillation analysis will produce imposter solutions. |
Address |
[Barenboim, G.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000432187800085 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
no |
Call Number |
IFIC @ pastor @ |
Serial |
3620 |
Permanent link to this record |
|
|
|
Author |
de Salas, P.F.; Forero, D.V.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
Status of neutrino oscillations 2018: 3 sigma hint for normal mass ordering and improved CP sensitivity |
Type |
Journal Article |
Year |
2018 |
Publication  |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
782 |
Issue |
|
Pages |
633-640 |
Keywords |
Neutrino mass and mixing; Neutrino oscillation; Solar and atmospheric neutrinos; Reactor and accelerator neutrinos; Neutrino telescopes |
Abstract |
We present a new global fit of neutrino oscillation parameters within the simplest three-neutrino picture, including new data which appeared since our previous analysis[1]. In this update we include new long-baseline neutrino data involving the antineutrino channel in T2K, as well as new data in the neutrino channel, data from NO nu A, as well as new reactor data, such as the Daya Bay 1230 days electron antineutrino disappearance spectrum data and the 1500 live days prompt spectrum from RENO, as well as new Double Chooz data. We also include atmospheric neutrino data from the IceCube DeepCore and ANTARES neutrino telescopes and from Super-Kamiokande. Finally, we also update our solar oscillation analysis by including the 2055-day day/night spectrum from the fourth phase of the Super-Kamiokande experiment. With the new data we find a preference for the atmospheric angle in the upper octant for both neutrino mass orderings, with maximal mixing allowed at Delta chi(2)= 1.6 (3.2) for normal (inverted) ordering. We also obtain a strong preference for values of the CP phase delta in the range [pi, 2 pi], excluding values close to pi/2at more than 4 sigma. More remarkably, our global analysis shows a hint in favorof the normal mass ordering over the inverted one at more than 3 sigma. We discuss in detail the status of the mass ordering, CP violation and octant sensitivities, analyzing the interplay among the different neutrino data samples. |
Address |
[de Salas, P. F.; Ternes, C. A.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000438486900094 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
3665 |
Permanent link to this record |
|
|
|
Author |
Barenboim, G.; Masud, M.; Ternes, C.A.; Tortola, M. |
Title |
Exploring the intrinsic Lorentz-violating parameters at DUNE |
Type |
Journal Article |
Year |
2019 |
Publication  |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
788 |
Issue |
|
Pages |
308-315 |
Keywords |
|
Abstract |
Neutrinos can push our search for new physics to a whole new level. What makes them so hard to be detected, what allows them to travel humongous distances without being stopped or deflected allows to amplify Planck suppressed effects (or effects of comparable size) to a level that we can measure or bound in DUNE. In this work we analyze the sensitivity of DUNE to CPT and Lorentz-violating interactions in a framework that allows a straightforward extrapolation of the bounds obtained to any phenomenological modification of the dispersion relation of neutrinos. |
Address |
[Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000455364400041 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
no |
Call Number |
IFIC @ pastor @ |
Serial |
3878 |
Permanent link to this record |
|
|
|
Author |
de Salas, P.F.; Pastor, S.; Ternes, C.A.; Thakore, T.; Tortola, M. |
Title |
Constraining the invisible neutrino decay with KM3NeT-ORCA |
Type |
Journal Article |
Year |
2019 |
Publication  |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
789 |
Issue |
|
Pages |
472-479 |
Keywords |
Neutrino masses and mixing; Neutrino oscillations; Neutrino decay; Neutrino telescopes |
Abstract |
Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile neutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters sin(2) theta(23) and Delta m(31)(2), as well as the sensitivity to the neutrino mass ordering. |
Address |
[de Salas, P. F.; Pastor, S.; Ternes, C. A.; Thakore, T.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000457165400063 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
3902 |
Permanent link to this record |
|
|
|
Author |
Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. |
Title |
XENON1T signal from transition neutrino magnetic moments |
Type |
Journal Article |
Year |
2020 |
Publication  |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
808 |
Issue |
|
Pages |
135685 - 5pp |
Keywords |
|
Abstract |
The recent puzzling results of the XENONIT collaboration at few keV electronic recoils could be due to the scattering of solar neutrinos endowed with finite Majorana transition magnetic moments (TMMs). Within such general formalism, we find that the observed excess in the XENONIT data agrees well with this interpretation. The required TMM strengths lie within the limits set by current experiments, such as Borexino, specially when one takes into account a possible tritium contamination. |
Address |
[Miranda, O. G.] Ctr Invest & Estudios Avanzados IPN, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000571769700059 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4541 |
Permanent link to this record |
|
|
|
Author |
de Salas, P.F.; Gariazzo, S.; Martinez-Mirave, P.; Pastor, S.; Tortola, M. |
Title |
Cosmological radiation density with non-standard neutrino-electron interactions |
Type |
Journal Article |
Year |
2021 |
Publication  |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
820 |
Issue |
|
Pages |
136508 - 9pp |
Keywords |
Neutrino interactions; Non-standard neutrino interactions; Cosmology; Neutrino oscillations |
Abstract |
Neutrino non-standard interactions (NSI) with electrons are known to alter the picture of neutrino de coupling from the cosmic plasma. NSI modify both flavour oscillations through matter effects, and the annihilation and scattering between neutrinos and electrons and positrons in the thermal plasma. In view of the forthcoming cosmological observations, we perform a precision study of the impact of non universal and flavour-changing NSI on the effective number of neutrinos, Neff. We present the variation of Neff arising from the different NSI parameters and discuss the existing degeneracies among them, from cosmology alone and in relation to the current bounds from terrestrial experiments. Even though cosmology is generally less sensitive to NSI than these experiments, we find that future cosmological data would provide competitive and complementary constraints for some of the couplings and their combinations. |
Address |
[de Salas, Pablo F.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden, Email: pablo.fernandez@fysik.su.se; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000713101800031 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5023 |
Permanent link to this record |
|
|
|
Author |
Gerbino, M. et al; Martinez-Mirave, P.; Mena, O.; Tortola, M.; Valle, J.W. . |
Title |
Synergy between cosmological and laboratory searches in neutrino physics |
Type |
Journal Article |
Year |
2023 |
Publication  |
Physics of the Dark Universe |
Abbreviated Journal |
Phys. Dark Universe |
Volume |
42 |
Issue |
|
Pages |
101333 - 36pp |
Keywords |
Neutrinos; Cosmology; Neutrino phenomenology |
Abstract |
The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Upcoming cosmological probes will measure the energy density of relativistic particles with higher precision, but could also start probing other properties of the neutrino spectra. When convolved with results from terrestrial experiments, cosmology can become even more acute at probing new physics related to neutrinos or even Beyond the Standard Model (BSM). Any discordance between laboratory and cosmological data sets may reveal new BSM physics and/or suggest alternative models of cosmology. We give examples of the intersection between terrestrial and cosmological probes in the neutrino sector, and briefly discuss the possibilities of what different laboratory experiments may see in conjunction with cosmological observatories. |
Address |
[Gerbino, Martina; Lattanzi, Massimiliano; Brinckmann, Thejs] INFN, Sez Ferrara, I-44122 Ferrara, Italy, Email: gerbinom@fe.infn.it; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001112368600001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5854 |
Permanent link to this record |