Records |
Author |
Escrihuela, F.J.; Forero, D.V.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. |
Title |
On the description of nonunitary neutrino mixing |
Type |
Journal Article |
Year |
2015 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
92 |
Issue |
5 |
Pages  |
053009 - 16pp |
Keywords |
|
Abstract |
Neutrino oscillations are well established and the relevant parameters determined with good precision, except for the CP phase, in terms of a unitary lepton mixing matrix. Seesaw extensions of the Standard Model predict unitarity deviations due to the admixture of heavy isosinglet neutrinos. We provide a complete description of the unitarity and universality deviations in the light-neutrino sector. Neutrino oscillation experiments involving electron or muon neutrinos and antineutrinos are fully described in terms of just three new real parameters and a new CP phase, in addition to the ones describing oscillations with unitary mixing. Using this formalism we describe the implications of nonunitarity for neutrino oscillations and summarize the model-independent constraints on heavy-neutrino couplings that arise from current experiments. |
Address |
[Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46980 Valencia, Spain, Email: franesfe@alumni.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1550-7998 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000361303200003 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
2389 |
Permanent link to this record |
|
|
|
Author |
Boucenna, M.S.; Morisi, S.; Tortola, M.; Valle, J.W.F. |
Title |
Bilarge neutrino mixing and the Cabibbo angle |
Type |
Journal Article |
Year |
2012 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
86 |
Issue |
5 |
Pages  |
051301 - 4pp |
Keywords |
|
Abstract |
Recent measurements of the neutrino mixing angles cast doubt on the validity of the so-far popular 2 tribimaximal mixing Ansatz. We propose a parametrization for the neutrino mixing matrix where the reactor angle seeds the large solar and atmospheric mixing angles, equal to each other in first approximation. We suggest such a bilarge mixing pattern as a model-building standard, realized when the leading order value of theta(13) equals the Cabibbo angle lambda(C). |
Address |
[Boucenna, S. M.; Morisi, S.; Tortola, M.; Valle, J. W. F.] Univ Politecn Valencia, Inst Fis Corpuscular, CSIC, AHEP Grp, E-46071 Valencia, Spain, Email: boucenna@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1550-7998 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000308690400001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
|
Call Number |
IFIC @ pastor @ |
Serial |
1147 |
Permanent link to this record |
|
|
|
Author |
Barenboim, G.; Martinez-Mirave, P.; Ternes, C.A.; Tortola, M. |
Title |
Neutrino CPT violation in the solar sector |
Type |
Journal Article |
Year |
2023 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
108 |
Issue |
3 |
Pages  |
035039 - 10pp |
Keywords |
|
Abstract |
In this paper, we place new bounds on CPT violation in the solar neutrino sector analyzing the results from solar experiments and KamLAND. We also discuss the sensitivity of the next-generation experiments DUNE and Hyper-Kamiokande, which will provide accurate measurements of the solar neutrino oscillation parameters. The joint analysis of both experiments will further improve the precision due to cancellations in the systematic uncertainties regarding the solar neutrino flux. In combination with the next-generation reactor experiment JUNO, the bound on CPT violation in the solar sector could be improved by 1 order of magnitude in comparison with current constraints. The distinguishability among CPT-violating neutrino oscillations and neutrino nonstandard interactions in the solar sector is also addressed. |
Address |
[Barenboim, G.; Martinez-Mirave, P.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, Carrer Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: gabriela.barenboim@uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001065884700002 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5692 |
Permanent link to this record |
|
|
|
Author |
Anamiati, G.; De Romeri, V.; Hirsch, M.; Ternes, C.A.; Tortola, M. |
Title |
Quasi-Dirac neutrino oscillations at DUNE and JUNO |
Type |
Journal Article |
Year |
2019 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
100 |
Issue |
3 |
Pages  |
035032 - 12pp |
Keywords |
|
Abstract |
Quasi-Dirac neutrinos are obtained when the Lagrangian density of a neutrino mass model contains both Dirac and Majorana mass terms, and the Majorana terms are sufficiently small. This type of neutrino introduces new mixing angles and mass splittings into the Hamiltonian, which will modify the standard neutrino oscillation probabilities. In this paper, we focus on the case where the new mass splittings are too small to be measured, but new angles and phases are present. We perform a sensitivity study for this scenario for the upcoming experiments DUNE and JUNO, finding that they will improve current bounds on the relevant parameters. Finally, we also explore the discovery potential of both experiments, assuming that neutrinos are indeed quasi-Dirac particles. |
Address |
[Anamiati, G.; De Romeri, V.; Hirsch, M.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, Paterna 46980, Spain, Email: anamiati@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000482944200007 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
no |
Call Number |
IFIC @ pastor @ |
Serial |
4124 |
Permanent link to this record |
|
|
|
Author |
Martinez-Mirave, P.; Molina Sedgwick, S.; Tortola, M. |
Title |
Nonstandard interactions from the future neutrino solar sector |
Type |
Journal Article |
Year |
2022 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
105 |
Issue |
3 |
Pages  |
035004 - 14pp |
Keywords |
|
Abstract |
The next-generation neutrino experiment JUNO will determine the solar oscillation parameters- sin(2) theta(12) and Delta m(21)(2)-with great accuracy, in addition to measuring sin(2)theta(13), Delta m(31)(2), and the mass ordering. In parallel, the continued study of solar neutrinos at Hyper-Kamiokande will provide complementary measurements in the solar sector. In this paper, we address the expected sensitivity to nonuniversal and flavor-changing nonstandard interactions (NSI) with d-type quarks from the combination of these two future neutrino experiments. We also show the robustness of their measurements of the solar parameters sin(2)theta(12) and Delta m(2)(1)(2) in the presence of NSI. We study the impact of the exact experimental configuration of the Hyper-Kamiokande detector, and conclude it is of little relevance in this scenario. Finally, we find that the LMA-D solution is expected to be present if no additional input from nonoscillation experiments is considered. |
Address |
[Martinez-Mirave, P.] Univ Valencia, Dept Fis Teor, Paterna 46980, Spain, Email: pamarmi@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000751937800002 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
no |
Call Number |
IFIC @ pastor @ |
Serial |
5109 |
Permanent link to this record |
|
|
|
Author |
Ge, S.F.; Pasquini, P.; Tortola, M.; Valle, J.W.F. |
Title |
Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing |
Type |
Journal Article |
Year |
2017 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
95 |
Issue |
3 |
Pages  |
033005 - 14pp |
Keywords |
|
Abstract |
Non-unitary neutrino mixing implies an extra CP violating phase that can fake the leptonic Dirac CP phase delta(CP) of the simplest three-neutrino mixing benchmark scheme. This would hinder the possibility of probing for CP violation in accelerator-type experiments. We take T2K and T2HK as examples to demonstrate the degeneracy between the “standard” (or “unitary”) and “nonunitary” CP phases. We find, under the assumption of nonunitary mixing, that their CP sensitivities severely deteriorate. Fortunately, the TNT2K proposal of supplementing T2(H)K with a μDAR source for better measurement of delta(CP) can partially break the CP degeneracy by probing both cos delta(CP) and sin delta(CP) dependences in the wide spectrum of the μDAR flux. We also show that the further addition of a near detector to the μDAR setup can eliminate the degeneracy completely. |
Address |
[Ge, Shao-Feng] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany, Email: gesf02@gmail.com; |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000394092900002 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
2988 |
Permanent link to this record |
|
|
|
Author |
Kosmas, T.S.; Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. |
Title |
Probing neutrino magnetic moments at the Spallation Neutron Source facility |
Type |
Journal Article |
Year |
2015 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
92 |
Issue |
1 |
Pages  |
013011 - 12pp |
Keywords |
|
Abstract |
Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrinonucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magnetic moments. The resulting sensitivities are determined on the basis of chi(2) analysis employing realistic nuclear structure calculations in the context of the quasiparticle random phase approximation. We find that they can improve existing limits by half an order of magnitude. In addition, we show that these facilities allow for standard model precision tests in the low energy regime, with a competitive determination of the weak mixing angle. Finally, they also offer the capability to probe other electromagnetic neutrino properties, such as the neutrino charge radius. We illustrate our results for various choices of experimental setup and target material. |
Address |
[Kosmas, T. S.; Papoulias, D. K.] Univ Ioannina, Theoret Phys Sect, GR-45110 Ioannina, Greece, Email: hkosmas@uoi.gr; |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1550-7998 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000358256700003 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
2311 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abud, A.A. et al); Amar, H.; Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Capo, J.; Cervera Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Hernandez-Garcia, J.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sanchez Bravo, A.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Ureña Gonzalez, J.; Valle, J.W.F.; Yahlali, N. |
Title |
DUNE Phase II: scientific opportunities, detector concepts, technological solutions |
Type |
Journal Article |
Year |
2024 |
Publication |
Journal of Instrumentation |
Abbreviated Journal |
J. Instrum. |
Volume |
19 |
Issue |
12 |
Pages  |
P12005 - 91pp |
Keywords |
Cryogenic detectors; Liquid detectors; Neutrino detectors; Noble liquid detectors (scintillation, ionization, double-phase) |
Abstract |
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a “Module of Opportunity”, aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. |
Address |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: s.soldner-rembold@imperial.ac.uk; |
Corporate Author |
|
Thesis |
|
Publisher |
IOP Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1748-0221 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001413560200001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
6536 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform |
Type |
Journal Article |
Year |
2020 |
Publication |
Journal of Instrumentation |
Abbreviated Journal |
J. Instrum. |
Volume |
15 |
Issue |
12 |
Pages  |
P12004 - 100pp |
Keywords |
Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC) |
Abstract |
The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2 x 6.1 x 7.0 m(3). It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design. |
Address |
[Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: cavanna@fnal.gov; |
Corporate Author |
|
Thesis |
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1748-0221 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000595944800004 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4643 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
Volume IV The DUNE far detector single-phase technology |
Type |
Journal Article |
Year |
2020 |
Publication |
Journal of Instrumentation |
Abbreviated Journal |
J. Instrum. |
Volume |
15 |
Issue |
8 |
Pages  |
T08010 - 619pp |
Keywords |
|
Abstract |
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. Central to achieving DUNE's physics program is a far detector that combines the many tens-of-kiloton fiducial mass necessary for rare event searches with sub-centimeter spatial resolution in its ability to image those events, allowing identification of the physics signatures among the numerous backgrounds. In the single-phase liquid argon time-projection chamber (LArTPC) technology, ionization charges drift horizontally in the liquid argon under the influence of an electric field towards a vertical anode, where they are read out with fine granularity. A photon detection system supplements the TPC, directly enhancing physics capabilities for all three DUNE physics drivers and opening up prospects for further physics explorations. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume IV presents an overview of the basic operating principles of a single-phase LArTPC, followed by a description of the DUNE implementation. Each of the subsystems is described in detail, connecting the high-level design requirements and decisions to the overriding physics goals of DUNE. |
Address |
[Abi, B.; Azfar, F.; Barr, G.; Kabirnezhad, M.; Reynolds, A.; Rodrigues, P.; Spagliardi, F.; Weber, A.] Univ Oxford, Oxford OX1 3RH, England |
Corporate Author |
|
Thesis |
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1748-0221 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000635160500002 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4785 |
Permanent link to this record |