|   | 
Details
   web
Records
Author (up) Abada, A.; De Romeri, V.; Lucente, M.; Teixeira, A.M.; Toma, T.
Title Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 169 - 57pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract An observation of any lepton number violating process will undoubtedly point towards the existence of new physics and indirectly to the clear Majorana nature of the exchanged fermion. In this work, we explore the potential of a minimal extension of the Standard Model via heavy sterile fermions with masses in the [0.1-10] GeV range concerning an extensive array of “neutrinoless” meson and tau decay processes. We assume that the Majorana neutrinos are produced on-shell, and focus on three-body decays. We conduct an update on the bounds on the active-sterile mixing elements, vertical bar U-l alpha 4,U-l beta 4 vertical bar, taking into account the most recent experimental bounds (and constraints) and new theoretical inputs, as well as the effects of a finite detector, imposing that the heavy neutrino decay within the detector. This allows to establish up-to-date comprehensive constraints on the sterile fermion parameter space. Our results suggest that the branching fractions of several decays are close to current sensitivities (likely within reach of future facilities), some being already in conflict with current data (as is the case of K-broken vertical bar -> l(alpha)(broken vertical bar)+l(beta)(+)pi(-), and tau(-)->mu(broken vertical bar)pi(-)pi(-)). We use these processes to extract constraints on all entries of an enlarged definition of a 3 x 3 “effective” Majorana neutrino mass matrix m(v)(alpha beta).
Address [Abada, Asmaa] Univ Paris Saclay, Univ Paris Sud, CNRS, Lab Phys Theor, 15 Rue Georges Clemenceau, F-91405 Orsay, France, Email: abada@th.u-psud.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000426478100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3511
Permanent link to this record
 

 
Author (up) Hagedorn, C.; Kriewald, J.; Orloff, J.; Teixeira, A.M.
Title Flavour and CP symmetries in the inverse seesaw Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 3 Pages 194 - 32pp
Keywords
Abstract We consider an inverse seesaw mechanism of neutrino mass generation in which the Standard Model is extended by 3 + 3 (heavy) sterile states, and endowed with a flavour symmetry G(f), G(f) = Delta(3n(2)) or G(f) = Delta(6n(2)), and a CP symmetry. These symmetries are broken in a peculiar way, so that in the charged lepton sector a residual symmetry G(l) is preserved, while the neutral fermion sector remains invariant under the residual symmetry G(nu) = Z(2) x CP. We study the concrete setup, where the Majorana mass term for three of the sterile states conserves G(nu), while the remaining mass terms (i.e. couplings of left-handed leptons and heavy sterile states, as well as the Dirac-type couplings among the latter) do not break the flavour or CP symmetry. We perform a comprehensive analysis of lepton mixing for different classes of residual symmetries, giving examples for each of these, and study in detail the impact of the additional sterile states on the predictions for lepton mixing. We further confront our results with those obtained in the model-independent scenario, in which the light neutrino mass matrix leaves the residual symmetry G(nu) intact. We consider the phenomenological impact of the inverse seesaw mechanism endowed with flavour and CP symmetries, in particular concerning effects of non-unitarity of the lepton mixing matrix (which strongly constrain the parameter space of the scenario), prospects for neutrinoless double beta decay and for charged lepton flavour violating processes.
Address [Hagedorn, C.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: jonathan.kriewald@clermont.in2p3.fr
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000764106400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5161
Permanent link to this record