toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hornillos, M.B.G.; Gorlychev, V.; Caballero, R.; Cortes, G.; Poch, A.; Pretel, C.; Calvino, F.; Tain, J.L.; Algora, A.; Agramunt, J.; Cano-Ott, D.; Martinez, T.; Mendoza, E.; Rissanen, J.; Aysto, J.; Jokinen, A.; Eronen, T.; Moore, I.; Penttila, H. doi  openurl
  Title (up) Monte Carlo Simulations for the Study of a Moderated Neutron Detector Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 1573-1576  
  Keywords Monte Carlo simulations; GEANT4; MCNPX; Beta delayed neutron emission; Neutron detector  
  Abstract This work presents the Monte Carlo simulations performed with the MCNPX and GEANT4 codes for the design of a BEta deLayEd Neutron detector, BELEN-20. This detector will be used for the study of beta delayed neutron emission and consists of a block of polyethylene with dimensions 90 x 90 x 80 cm(3) and 20 cylindrical (3)He gas counters. The results of these simulations have been validated experimentally with a (252)Cf source in the laboratory at UPC, Barcelona. Also the first experiment with this detector has been carried out in November 2009 in JYFL, Finland. In this experiment the neutron emission probability after beta decay of the fission products (88)Br, (94,95)Rb, and (138)I has been measured; this data is still under analysis. Simulations with MCNPX and GEANT4 have been performed in order to obtain the efficiency of the BELEN-20 detector for each of the above nuclei using the neutron energy distribution corresponding to each nucleus.  
  Address [Hornillos, MBG; Gorlychev, V; Caballero, R; Cortes, G; Poch, A; Pretel, C; Calvino, F] Univ Politecn Cataluna, Seccio Engn Nucl, E-08028 Barcelona, Spain, Email: belen.gomez@upc.edu  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700028 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 733  
Permanent link to this record
 

 
Author n_TOF Collaboration (Mingrone, F. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. url  doi
openurl 
  Title (up) Neutron capture cross section measurement of U-238 at the CERN n_TOF facility in the energy region from 1 eV to 700 keV Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 95 Issue 3 Pages 034604 - 14pp  
  Keywords  
  Abstract The aim of this work is to provide a precise and accurate measurement of the U-238(n,gamma) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the uncertainty in the radiative capture cross section of U-238 should be further reduced to 1-3% in the energy region from 20 eV to 25 keV. To this purpose, addressed by the Nuclear Energy Agency as a priority nuclear data need, complementary experiments, one at the GELINA and two at the nTOF facility, were proposed and carried out within the 7th Framework Project ANDES of the European Commission. The results of one of these U-238(n, gamma) measurements performed at the nTOF CERN facility are presented in this work. The gamma-ray cascade following the radiative neutron capture has been detected exploiting a setup of two C6D6 liquid scintillators. Resonance parameters obtained from this work are on average in excellent agreement with the ones reported in evaluated libraries. In the unresolved resonance region, this work yields a cross section in agreement with evaluated libraries up to 80 keV, while for higher energies our results are significantly higher.  
  Address [Mingrone, F.; Berthoumieux, E.; Brugger, M.; Calviani, M.; Cerutti, F.; Chiaveri, E.; Chin, M.; Guerrero, C.; Hernandez-Prieto, A.; Kadi, Y.; Losito, R.; Rubbia, C.; Tsinganis, A.; Vlachoudis, V.] CERN, European Org Nucl Res, Geneva, Switzerland, Email: federica.mingrone@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000396022500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3030  
Permanent link to this record
 

 
Author n_TOF Collaboration (Lederer, C. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. url  doi
openurl 
  Title (up) Neutron Capture Cross Section of Unstable Ni-63: Implications for Stellar Nucleosynthesis Type Journal Article
  Year 2013 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 110 Issue 2 Pages 022501 - 5pp  
  Keywords  
  Abstract The Ni-63(n, gamma) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from kT = 5-100 keV with uncertainties around 20%. Stellar model calculations for a 25M(circle dot) star show that the new data have a significant effect on the s-process production of Cu-63, Ni-64, and Zn-64 in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.  
  Address [Lederer, C.; Paradela, C.; Wallner, A.] Univ Vienna, Fac Phys, A-1090 Vienna, Austria  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000313336500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1305  
Permanent link to this record
 

 
Author n_TOF Collaboration (Cano-Ott, D. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title (up) Neutron Capture Measuremetns on Minor Actinides at the n_TOF Facility at CERN: Past, Present and Future Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 1809-1812  
  Keywords n_TOF; Total Absorption Calorimeter; TAC; Neutron capture; Cross section; Nuclear waste; Transmutation; Generation IV; Accelerator driven system; ADS; Nuclear reactor; Nuclear energy; Nuclear data; Barium fluoride; Actinides; Plutonium; Americium; Uranium  
  Abstract The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity studies and reports [1-3] have identified the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n_TOF collaboration has initiated an ambitious experimental program for the measurement of neutron capture cross sections of minor actinides. Two experimental setups have been constructed for this purpose: a Total Absorption Calorimeter (TAC) [4] for measuring neutron capture cross-sections of low-mass and/or radioactive samples and a set of two low neutron sensitivity C(6)D(6) detectors for the less radioactive materials.  
  Address [Cano-Ott, D; Alvarez-Velarde, F; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Mendoza, E; Villamarin, D; Vicente, MC] Ctr Invest Energet Medioambientales & Technol CIE, Madrid, Spain, Email: daniel.cano@ciemat.es  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700085 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 737  
Permanent link to this record
 

 
Author n_TOF Collaboration; Gunsing, F.; Berthoumieux, E.; Borella, A.; Belgya, T.; Szentmiklosi, L.; Schillebeeckx, P.; Drohe, J.C.; Wynants, R.; Colonna, N.; Marrone, S.; Tagliente, G.; Terlizzi, R.; Domingo-Pardo, C.; Tain, J.L.; Martinez, T.; Massimi, C.; Mastinu, P.M.; Milazzo, P.M. doi  openurl
  Title (up) Neutron Capture on (209)Bi: Determination of the Production Ratio of (210m)Bi/(210g)Bi Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 1670-1675  
  Keywords ND2010; Nuclear data; Neutron capture; Branching ratio; Statistical decay; (209)Bi; (210)Bi; (210)Po  
  Abstract Neutron capture on (209)Bi produces either an isomeric state (210m)Bi with a half life of 3 x 106 years, or the ground state (210g)Bi which decays with a half life of 5 days to the alpha emitter (210)Po. Therefore the neutron capture cross section ratio (209)Bi(n,gamma)(210m)Bi/(210g)Bi plays an important role in predicting the short- and long-term radio-toxicity produced by (209)Bi under neutron irradiation. This ratio is dependent on the neutron energy. We have measured this ratio for cold neutrons at the cold neutron beam facility of the Budapest Neutron Centre by observing the population of the ground-and the metastable state using high resolution gamma-ray spectroscopy. The same technique has been used at the pulsed white neutron source GELINA of the IRMM, Geel in combination with the neutron time-of-flight technique. Results for the neutron-energy dependent branching ratio will be presented. In addition we performed simulations using a statistical decay code.  
  Address [Gunsing, F; Berthoumieux, E; Borella, A] CEA Saclay, IRFU, SPhN, F-91911 Gif Sur Yvette, France, Email: gunsing@cea.fr  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700051 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 736  
Permanent link to this record
 

 
Author n_TOF Collaboration (Tagliente, G. et al.); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title (up) Neutron capture on (94)Zr: Resonance parameters and Maxwellian-averaged cross sections Type Journal Article
  Year 2011 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 84 Issue 1 Pages 015801 - 9pp  
  Keywords  
  Abstract The neutron capture cross sections of the Zr isotopes play an important role in nucleosynthesis studies. The s-process reaction flow between the Fe seed and the heavier isotopes passes through the neutron magic nucleus (90)Zr and through (91,92,93,94)Zr, but only part of the flow extends to (96)Zr because of the branching point at (95)Zr. Apart from their effect on the s-process flow, the comparably small isotopic (n, gamma) cross sections make Zr also an interesting structural material for nuclear reactors. The (94)Zr (n, gamma) cross section has been measured with high resolution at the spallation neutron source n_TOF at CERN and resonance parameters are reported up to 60 keV neutron energy.  
  Address [Tagliente, G; Colonna, N; Marrone, S; Terlizzi, R] Ist Nazl Fis Nucl, I-70126 Bari, Italy, Email: giuseppe.tagliente@ba.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292767200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 687  
Permanent link to this record
 

 
Author n_TOF Collaboration (Guerrero, C. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title (up) Neutron Capture on the s-Process Branching Point Tm-171 via Time-of-Flight and Activation Type Journal Article
  Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 125 Issue 14 Pages 142701 - 8pp  
  Keywords  
  Abstract The neutron capture cross sections of several unstable nuclides acting as branching points in the s process are crucial for stellar nucleosynthesis studies. The unstable Tm-171 (t(1/2) = 1.92 yr) is part of the branching around mass A similar to 170 but its neutron capture cross section as a function of the neutron energy is not known to date. In this work, following the production for the first time of more than 5 mg of Tm-171 at the high-flux reactor Institut Laue-Langevin in France, a sample was produced at the Paul Scherrer Institute in Switzerland. Two complementary experiments were carried out at the neutron time-of-flight facility (nTOF) at CERN in Switzerland and at the SARAF liquid lithium target facility at Soreq Nuclear Research Center in Israel by time of flight and activation, respectively. The result of the time -of-flight experiment consists of the first ever set of resonance parameters and the corresponding average resonance parameters, allowing us to make an estimation of the Maxwellian-averaged cross sections (MACS) by extrapolation. The activation measurement provides a direct and more precise measurement of the MACS at 30 keV: 384 (40) mb, with which the estimation from the nTOF data agree at the limit of 1 standard deviation. This value is 2.6 times lower than the JEFF-3.3 and ENDF/B-VIII evaluations, 25% lower than that of the Bao et al. compilation, and 1.6 times larger than the value recommended in the KAlloNiS (v1) database, based on the only previous experiment. Our result affects the nucleosynthesis at the A similar to 170 branching, namely, the Yb-171 abundance increases in the material lost by asymptotic giant branch stars, providing a better match to the available pre-solar SiC grain measurements compared to the calculations based on the current JEFF-3.3 model-based evaluation.  
  Address [Guerrero, C.; Lerendegui-Marco, J.; Quesada, J. M.; Cortes-Giraldo, M. A.; Millan-Callado, M. A.; Praena, J.; Rodriguez-Gonzalez, T.; Sabate-Gilarte, M.] Univ Seville, Seville, Spain, Email: cguerrero4@us.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000574781200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4551  
Permanent link to this record
 

 
Author n_TOF Collaboration (Lederer, C. et al); Giubrone, G.; Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title (up) Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process Type Journal Article
  Year 2014 Publication Nuclear Data Sheets Abbreviated Journal Nucl. Data Sheets  
  Volume 120 Issue Pages 201-204  
  Keywords  
  Abstract Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility n_TOF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed.  
  Address [Lederer, C.; Pavlik, A.; Wallner, A.] Univ Vienna, Fac Phys, A-1090 Vienna, Austria, Email: claudia.lederer@ed.ac.uk  
  Corporate Author Thesis  
  Publisher Academic Press Inc Elsevier Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0090-3752 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339860100056 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1875  
Permanent link to this record
 

 
Author Grieger, M.; Hensel, T.; Agramunt, J.; Bemmerer, D.; Degering, D.; Dillmann, I.; Fraile, L.M.; Jordan, D.; Koster, U.; Marta, M.; Muller, S.E.; Szucs, T.; Tain, J.L.; Zuber, K. url  doi
openurl 
  Title (up) Neutron flux and spectrum in the Dresden Felsenkeller underground facility studied by moderated He-3 counters Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 12 Pages 123027 - 15pp  
  Keywords  
  Abstract Ambient neutrons may cause significant background for underground experiments. Therefore, it is necessary to investigate their flux and energy spectrum in order to devise a proper shielding. Here, two sets of altogether ten moderated He-3 neutron counters are used for a detailed study of the ambient neutron background in tunnel IV of the Felsenkeller facility, underground below 45 m of rock in Dresden/Germany. One of the moderators is lined with lead and thus sensitive to neutrons of energies higher than 10 MeV. For each He-3 counter moderator assembly, the energy-dependent neutron sensitivity was calculated with the FLUKA code. The count rates of the ten detectors were then fitted with the MAXED and GRAVEL packages. As a result, both the neutron energy spectrum from 10(-9) to 300 MeV and the flux integrated over the same energy range were determined experimentally. The data show that at a given depth, both the flux and the spectrum vary significantly depending on local conditions. Energy-integrated fluxes of (0.61 +/- 0.05), (1.96 +/- 0.15), and (4.6 +/- 0.4) x 10(-4) cm(-2) s(-1), respectively, are measured for three sites within Felsenkeller tunnel IV which have similar muon flux but different shielding wall configurations. The integrated neutron flux data and the obtained spectra for the three sites are matched reasonably well by FLUKA Monte Carlo calculations that are based on the known muon flux and composition of the measurement room walls.  
  Address [Grieger, M.; Hensel, T.; Bemmerer, D.; Mueller, S. E.; Szuecs, T.] Helmholtz Zentrum Dresden Rossendorf HZDR, D-01328 Dresden, Germany, Email: d.bemmerer@hzdr.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000542517900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4442  
Permanent link to this record
 

 
Author n_TOF Collaboration (Mosconi, M. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title (up) Neutron physics of the Re/Os clock. I. Measurement of the (n, gamma) cross sections of Os-186,Os-187,Os-188 at the CERN n_TOF facility Type Journal Article
  Year 2010 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 82 Issue 1 Pages 015802 - 10pp  
  Keywords  
  Abstract The precise determination of the neutron capture cross sections of Os-186 and Os-187 is important to define the s-process abundance of Os-187 at the formation of the solar system. This quantity can be used to evaluate the radiogenic component of the abundance of Os-187 due to the decay of the unstable Re-187 (t(1/2) = 41.2 Gyr) and from this to infer the time duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of Os-186, Os-187, and Os-188 have been measured at the CERN n_TOF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. The measurement has been performed by time-of-flight technique using isotopically enriched samples and two C6D6 scintillation detectors for recording the prompt. rays emitted in the capture events. Maxwellian averaged capture cross sections have been determined for thermal energies between kT = 5 and 100 keV corresponding to all possible s-process scenarios. The estimated uncertainties for the values at 30 keV are 4.1, 3.3, and 4.7% for Os-186, Os-187, and Os-188, respectively.  
  Address [Mosconi, M.; Domingo-Pardo, C.; Kaeppeler, F.; Audouin, L.; Bisterzo, S.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] KIT, Inst Kernphys, D-76021 Karlsruhe, Germany, Email: Marita.Mosconi@ptb.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279940200007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 409  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva