|   | 
Details
   web
Records
Author Salami, R. et al; Lacasta, C.; Lopez, H.; Platero, V.; Solaz, C.; Soldevila, U.
Title Quality concerns caused by quality control – deformation of silicon strip detector modules in thermal cycling tests Type Journal Article
Year (down) 2025 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 20 Issue 3 Pages P03004 - 17pp
Keywords Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Solid state detectors; Radiation-hard detectors
Abstract The ATLAS experiment at the Large Hadron Collider (LHC) is currently preparing to replace its present Inner Detector (ID) with the upgraded, all-silicon Inner Tracker (ITk) for its High-Luminosity upgrade (HL-LHC). The ITk will consist of a central pixel tracker and the outer strip tracker, consisting of about 19,000 strip detector modules. Each strip module is assembled from up to two sensors, and up to five flexes (depending on its geometry) in a series of gluing, wirebonding and quality control steps. During detector operation, modules will be cooled down to temperatures of about -35 degrees C (corresponding to the temperature of the support structures on which they will be mounted) after being initially assembled and stored at room temperature. In order to ensure compatibility with the detector's operating temperature range, modules are subjected to thermal cycling as part of their quality control process. Ten cycles between -35 degrees C and +40 degrees C are performed for each module, with full electrical characterisation tests at each high and low temperature point. As part of an investigation into the stress experienced by modules during cooling, it was observed that modules generally showed a change in module shape before and after thermal cycling. This paper presents a summary of the discovery and understanding of the observed changes, connecting them with excess module stress, as well as the resulting modifications to the module thermal cycling procedure.
Address [Salami, Richard; Poley, Luise; Rajagopalan, Archa Devi; Speers, Peter] Simon Fraser Univ, Dept Phys, Univ Dr W, Burnaby, BC, Canada, Email: ros3@sfu.ca
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001439202000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6548
Permanent link to this record
 

 
Author Miyagawa, P.S. et al; Bernabeu, P.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Analysis of the results from Quality Control tests performed on ATLAS18 Strip Sensors during on-going production Type Journal Article
Year (down) 2024 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1064 Issue Pages 169457 - 9pp
Keywords HL-LHC; ATLAS; ITk; Strip sensors
Abstract The ATLAS experiment will replace its existing Inner Detector with the new all -silicon Inner Tracker (ITk) to cope with the operating conditions of the forthcoming high -luminosity phase of the LHC (HL-LHC). The outer regions of the ITk will be instrumented with similar to 18000 ATLAS18 strip sensors fabricated by Hamamatsu Photonics K.K. (HPK). With the launch of full-scale sensor production in 2021, the ITk strip sensor community has undertaken quality control (QC) testing of these sensors to ensure compliance with mechanical and electrical specifications agreed with HPK. The testing is conducted at seven QC sites on each of the monthly deliveries of similar to 500 sensors. This contribution will give an overview of the QC procedures and analysis; the tests most likely to determine pass/fail for a sensor are IV, long-term leakage current stability, full strip test and visual inspection. The contribution will then present trends in the results and properties following completion of similar to 60% of production testing. It will also mention challenges overcome through collaborative efforts with HPK during the early phases of production. With less than 5% of sensors rejected by QC testing, the overall production quality has been very good.
Address [Miyagawa, P. S.; Beck, G. A.; Bevan, A. J.; Chen, Z.; Dawson, I.; Zenz, S. C.] Queen Mary Univ London, Particle Phys Res Ctr, GO Jones Bldg, Mile End Rd, London E14NS, England, Email: paul.miyagawa@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001249611300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6158
Permanent link to this record
 

 
Author Bach, E. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Analysis of the quality assurance results from the initial part of production of the ATLAS18 ITK strip sensors Type Journal Article
Year (down) 2024 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1064 Issue Pages 169435 - 8pp
Keywords Silicon strip sensors; Parameter analysis
Abstract The production of strip sensors for the ATLAS Inner Tracker (ITk) started in 2021. Since then, a Quality Assurance (QA) program has been carried out continuously, by using specific test structures, in parallel to the Quality Control (QC) inspection of the sensors. The QA program consists of monitoring sensor-specific characteristics and the technological process variability, before and after the irradiation with gammas, neutrons, and protons. After two years, half of the full production volume has been reached and we present an analysis of the parameters measured as part of the QA process. The main devices used for QA purposes are miniature strip sensors, monitor diodes, and the ATLAS test chip, which contains several test structures. Such devices are tested by several sites across the collaboration depending on the type of samples (non-irradiated components or irradiated with protons, neutrons, or gammas). The parameters extracted from the tests are then uploaded to a database and analyzed by Python scripts. These parameters are mainly examined through histograms and timeevolution plots to obtain parameter distributions, production trends, and meaningful parameter-to-parameter correlations. The purpose of this analysis is to identify possible deviations in the fabrication or the sensor quality, changes in the behavior of the test equipment at different test sites, or possible variability in the irradiation processes. The conclusions extracted from the QA program have allowed test optimization, establishment of control limits for the parameters, and a better understanding of device properties and fabrication trends. In addition, any abnormal results prompt immediate feedback to a vendor.
Address [Bach, E.; Bhardwaj, A.; Crick, B.; Ullan, M.] CSIC, Inst Microelect Barcelona IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: eric.bach@imb-cnm.csic.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001252172700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6163
Permanent link to this record
 

 
Author Escrig, S. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.
Title First test of energy response of the micro-vertex detection system for the WASA-FRS Experiments Type Journal Article
Year (down) 2024 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1064 Issue Pages 169392 - 4pp
Keywords Micro-strip silicon sensor; Tracking detector; Micro-vertex detector
Abstract The hypernuclei, which are nuclei that contain the quark s, have been studied for more than 50 years. Notwithstanding, the recent experiments using high-energy heavy-ion induced reactions have challenged their current understanding. The high multiplicity of particles generated in the reaction allows for the measurement of the interaction point of the primary beam with the target. Then, a micro-vertex detection system for the WASA-FRS Experiments has been developed. Several experimental tests have been performed with Sr-90 and Bi-207 beta sources and a 10-MeV proton beam at the CMAM tandem accelerator, and their results are reported.
Address [Escrig, S.; Rappold, C.; Ruiz, D. Fernandez; Borge, M. J. Garcia; Tavora, V. Garcia; Aguirre, A. Nerio; Martinez, A. Perea; Sanchez-Prieto, J.; Tengblad, O.] CSIC, IEM, Madrid 28006, Spain, Email: samuel.escrig@csic.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001301017700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6242
Permanent link to this record
 

 
Author Barrientos, L.; Borja-Lloret, M.; Casaña, J.V.; Hueso-Gonzalez, F.; Ros, A.; Roser, J.; Senra, C.; Solaz, C.; Viegas, R.; Llosa, G.
Title System characterization and performance studies with MACACO III Compton camera Type Journal Article
Year (down) 2023 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.
Volume 208 Issue Pages 110922 - 13pp
Keywords Compton camera; Scintillator crystals; Silicon photomultipliers
Abstract The IRIS group of IFIC-Valencia has developed a Compton camera prototype. The system detectors are made of Lanthanum (III) bromide scintillator crystals coupled to silicon photomultipliers. Two models of silicon photomultipliers arrays with different micro pixel pitch (25 and 50 μm) have been chosen as possible candidates to improve the response of the new system. Characterization studies with a 22Na point-like source have indicated that the 25 μm photodetector provided better performance in terms of energy resolution (5.2% FWHM at 511 keV) and angular resolution (6.9 degrees FWHM at 1275 keV), and more stability with temperature variations. In addition, MACACO III imaging capabilities have been assessed using a structure composed of thirty-seven 22Na point-like sources. Furthermore, in order to evaluate possible ways of improving the system performance, several studies have been carried out by means of simulations both in realistic and performance improved conditions. In this work, the system performance is evaluated for its future application in different areas.
Address [Barrientos, L.; Borja-Lloret, M.; Casana, J. V.; Hueso-Gonzalez, F.; Ros, A.; Roser, J.; Senra, C.; Solaz, C.; Viegas, R.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IF, Valencia, Spain, Email: Luis.Barrientos@ific.uv.es;
Corporate Author Thesis
Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-806x ISBN Medium
Area Expedition Conference
Notes WOS:000962800400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5511
Permanent link to this record
 

 
Author Unno, Y. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Specifications and pre-production of n plus -in-p large-format strip sensors fabricated in 6-inch silicon wafers, ATLAS18, for the Inner Tracker of the ATLAS Detector for High-Luminosity Large Hadron Collider Type Journal Article
Year (down) 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 3 Pages T03008 - 29pp
Keywords Particle tracking detectors (Solid-state detectors); Radiation-hard detectors; Si microstrip and pad detectors
Abstract The ATLAS experiment is constructing new all-silicon inner tracking system for HL-LHC. The strip detectors cover the radial extent of 40 to 100 cm. A new approach is adopted to use p-type silicon material, making the readout in n+-strips, so-called n+-in-p sensors. This allows for enhanced radiation tolerance against an order of magnitude higher particle fluence compared to the LHC. To cope with varying hit rates and occupancies as a function of radial distance, there are two barrel sensor types, the short strips (SS) for the inner 2 and the long strips (LS) for the outer 2 barrel cylinders, respectively. The barrel sensors exhibit a square, 9.8 x 9.8 cm2, geometry, the largest possible sensor area from a 6-inch wafer. The strips are laid out in parallel with a strip pitch of 75.5 μm and 4 or 2 rows of strip segments. The strips are AC-coupled and biased via polysilicon resistors. The endcap sensors employ a “stereo-annulus” geometry exhibiting a skewed-trapezoid shapes with circular edges. They are designed in 6 unique shapes, R0 to R5, corresponding to progressively increasing radial extents and which allows them to fit within the petal geometry and the 6-inch wafer maximally. The strips are in fan-out geometry with an in-built rotation angle, with a mean pitch of approximately 75 μm and 4 or 2 rows of strip segments. The eight sensor types are labeled as ATLAS18xx where xx stands for SS, LS, and R0 to R5. According to the mechanical and electrical specifications, CAD files for wafer processing were laid out, following the successful designs of prototype barrel and endcap sensors, together with a number of optimizations. A pre-production was carried out prior to the full production of the wafers. The quality of the sensors is reviewed and judged excellent through the test results carried out by vendor. These sensors are used for establishing acceptance procedures and to evaluate their performance in the ATLAS collaboration, and subsequently for pre-production of strip modules and stave and petal structures.
Address [Allport, P. P.; Chisholm, A.; George, W.; Gonella, L.; Kopsalis, I.; Lomas, J.] Univ Birmingham, Sch Phys & Astron, Birmingham B152TT, England, Email: yoshinobu.unno@kek.jp
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000974242700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5522
Permanent link to this record
 

 
Author Latonova, V. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Characterization of the polysilicon resistor in silicon strip sensors for ATLAS inner tracker as a function of temperature, pre- and post-irradiation Type Journal Article
Year (down) 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1050 Issue Pages 168119 - 5pp
Keywords HL-LHC; ATLAS ITk; Silicon micro-strip sensor; Polysilicon bias resistor; Testchip
Abstract The high luminosity upgrade of the Large Hadron Collider, foreseen for 2029, requires the replacement of the ATLAS Inner Detector with a new all-silicon Inner Tracker (ITk). The expected ultimate total integrated luminosity of 4000 fb(-1) means that the strip part of the ITk detector will be exposed to the total particle fluences and ionizing doses reaching the values of 1.6 center dot 10(15) MeVn(eq)/cm(2) and 0.66MGy, respectively, including a safety factor of 1.5. Radiation hard n(+)-in-p micro-strip sensors were developed by the ATLAS ITk strip collaboration and are produced by Hamamatsu Photonics K.K. The active area of each ITk strip sensor is delimited by the n-implant bias ring, which is connected to each individual n(+) implant strip by a polysilicon bias resistor. The total resistance of the polysilicon bias resistor should be within a specified range to keep all the strips at the same potential, prevent the signal discharge through the grounded bias ring and avoid the readout noise increase. While the polysilicon is a ubiquitous semiconductor material, the fluence and temperature dependence of its resistance is not easily predictable, especially for the tracking detector with the operational temperature significantly below the values typical for commercial microelectronics. Dependence of the resistance of polysilicon bias resistor on the temperature, as well as on the total delivered fluence and ionizing dose, was studied on the specially-designed test structures called ATLAS Testchips, both before and after their irradiation by protons, neutrons, and gammas to the maximal expected fluence and ionizing dose. The resistance has an atypical negative temperature dependence. It is different from silicon, which shows that the grain boundary has a significant contribution to the resistance. We discuss the contributions by parameterizing the activation energy of the polysilicon resistance as a function of the temperature for unirradiated and irradiated ATLAS Testchips.
Address [Latonova, V.; Federicova, P.; Kroll, J.; Kvasnicka, J.; Mikestikova, M.] Acad Sci Czech Republ, Inst Phys, Slovance 2, Prague 8, Czech Republic, Email: vera.latonova@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001035405300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5601
Permanent link to this record
 

 
Author Helling, C. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.
Title Strip sensor performance in prototype modules built for ATLAS ITk Type Journal Article
Year (down) 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 978 Issue Pages 164402 - 6pp
Keywords Silicon strip sensors; Strip module; Inter-strip isolation; Readout noise
Abstract ATLAS experiment is preparing an upgrade of its detector for High-Luminosity LHC (HL-LHC) operation. The upgrade involves installation of the new all-silicon Inner Tracker (ITk). In the context of the ITk preparations, more than 80 strip modules were built with prototype barrel sensors. They were tested with electrical readout on a per-channel basis. In general, an excellent performance was observed, consistent with previous ASIC-level and sensor-level tests. However, the lessons learned included two phenomena important for the future phases of the project. First was the need to store and test the modules in a dry environment due to humidity sensitivity of the sensors. The second was an observation of high noise regions for 2 modules. The high noise regions were tested further in several ways, including monitoring the performance as a function of time and bias voltage. Additionally, direct sensor-level tests were performed on the affected channels. The inter-strip resistance and bias resistance tests showed low values, indicating a temporary loss of the inter-strip isolation. A subsequent recovery of the noise performance was observed. We present the test details, an analysis of how the inter-strip isolation affects the module noise, and the relationship with sensor-level quality control tests.
Address [Helling, C.; Affolder, A. A.; Fadeyev, V.; Galloway, Z.; Gignac, M.; Gunnell, J.; Martinez-Mckinney, F.; Kang, N.; Yarwick, J.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA, Email: fadeyev@ucsc.edu
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000560076700015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4505
Permanent link to this record
 

 
Author Poley, L. et al; Bernabeu, J.; Civera, J.V.; Lacasta, C.; Leon, P.; Platero, A.; Platero, V; Solaz, C.; Soldevila, U.; Vidal, G.
Title The ABC130 barrel module prototyping programme for the ATLAS strip tracker Type Journal Article
Year (down) 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 15 Issue 9 Pages P09004 - 78pp
Keywords Detector design and construction technologies and materials; Si microstrip and pad detectors; Radiation-hard detectors; Front-end electronics for detector readout
Abstract For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
Address [Poley, L.; Anderssen, E.; Ciocio, A.; Cornell, E.; Haber, C.; Haugen, T. E.; Heim, T.; Johnson, T. A.; Krizka, K.; Labitan, C.; Li, B.; Li, C.; MacFadyen, R.; Mladina, E.; Ottino, G.; Sanethavong, P.; Santpur, S. Neha; Witharm, R.] Lawrence Berkeley Natl Lab, Cyclotron Rd, Berkeley, CA 94720 USA, Email: APoley@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000577273400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4572
Permanent link to this record
 

 
Author Kuehn, S. et al; Bernabeu, J.; Lacasta, C.; Marco-Hernandez, R.; Rodriguez Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila Serrano, U.
Title Prototyping of petalets for the Phase-II upgrade of the silicon strip tracking detector of the ATLAS experiment Type Journal Article
Year (down) 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages T03004 - 22pp
Keywords Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Solid state detectors; Performance of High Energy Physics Detectors
Abstract In the high luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.
Address [Kuehn, S.] European Org Nucl Res, CERN, Geneva, Switzerland, Email: susanne.kuehn@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000428146400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3530
Permanent link to this record