toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Aguilar-Saavedra, J.A.; Bernabeu, J.; Mitsou, V.A.; Segarra, A. url  doi
openurl 
  Title The Z boson spin observables as messengers of new physics Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 4 Pages 234 - 6pp  
  Keywords  
  Abstract We demonstrate that the eight multipole parameters describing the spin state of the Z boson are able to disentangle known Z production mechanisms and signals from new physics at the LHC. They can be extracted from appropriate asymmetries in the angular distribution of lepton pairs from the Z boson decay. The power of this analysis is illustrated by (1) the production of Z boson plus jets; (2) Z boson plus missing transverse energy; (3) W and Z bosons originating from the two-body decay of a heavy resonance.  
  Address [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain, Email: jaas@ugr.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399448700004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3121  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Botella, F.J.; Nebot, M.; Segarra, A. url  doi
openurl 
  Title B-0 – (B)over-bar(0) entanglement for an ideal experiment for the direct CP violation phi(3)/gamma phase Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 5 Pages 054026 - 7pp  
  Keywords  
  Abstract B-0-(B) over bar0 entanglement offers a conceptual alternative to the single charged B-decay asymmetry for the measurement of the direct CP-violating gamma/phi(3) phase. With f = J/Psi(L); J/Psi K-S and g = (pi pi)(0); (rho(L)rho(L))(0), the 16 time-ordered double-decay rate intensities to (f, g) depend on the relative phase between the f- and g-decay amplitudes given by gamma at tree level. Several constraining consistencies appear. An intrinsic accuracy of the method at the level of +/- 1 degrees could be achievable at Belle-II with an improved determination of the penguin amplitude to g channels from existing facilities.  
  Address [Bernabeu, Jose; Botella, Francisco J.; Nebot, Miguel] Univ Valencia, Dept Theoret Phys, Valencia 46100, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000882839300002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5406  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Sabulsky, D.O.; Sanchez, F.; Segarra, A. url  doi
openurl 
  Title Neutrino mass and nature through its mediation in atomic clock interference Type Journal Article
  Year 2024 Publication AVS Quantum Science Abbreviated Journal AVS Quantum Sci.  
  Volume 6 Issue 1 Pages 014410 - 8pp  
  Keywords  
  Abstract The absolute mass of neutrinos and their nature are presently unknown. Aggregate matter has a coherent weak charge leading to a repulsive interaction mediated by a neutrino pair. The virtual neutrinos are non-relativistic at micron distances, giving a distinct behavior for Dirac versus Majorana mass terms. This effective potential allows for the disentanglement of the Dirac or Majorana nature of the neutrino via magnitude and distance dependence. We propose an experiment to search for this potential based on the concept that the density-dependent interaction of an atomic probe with a material source in one arm of an atomic clock interferometer generates a differential phase. The appropriate geometry of the device is selected using the saturation of the weak potential as a guide. The proposed experiment has the added benefit of being sensitive to gravity at micron distances. A strategy to suppress the competing Casimir-Polder interaction, depending on the electronic structure of the material source, as well as a way to compensate the gravitational interaction in the two arms of the interferometer is discussed.  
  Address [Bernabeu, Jose; Segarra, Alejandro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: jose.bernabeu@uv.es  
  Corporate Author Thesis  
  Publisher AIP Publishing Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001186930100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6118  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Segarra, A. url  doi
openurl 
  Title Do T asymmetries for neutrino oscillations in uniform matter have a CP-even component? Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 103 - 12pp  
  Keywords CP violation; Discrete Symmetries; Neutrino Physics  
  Abstract Observables of neutrino oscillations in matter have, in general, contributions from the effective matter potential. It contaminates the CP violation asymmetry adding a fake effect that has been recently disentangled from the genuine one by their different behavior under T and CPT. Is the genuine T-odd CPT-invariant component of the CP asymmetry coincident with the T asymmetry? Contrary to CP, matter effects in uniform matter cannot induce by themselves a non-vanishing T asymmetry; however, the question of the title remained open. We demonstrate that, in the presence of genuine CP violation, there is a new non-vanishing CP-even, and so CPT-odd, component in the T asymmetry in matter, which is of odd-parity in both the phase delta of the flavor mixing and the matter parameter a. The two disentangled components, genuine A(alpha beta)(T;CP) and fake A(alpha beta)(T;CPT), could be experimentally separated by the measurement of the two T asymmetries in matter (nu(alpha) <-> nu(beta)) and ((nu) over bar <-> (nu) over bar (beta)). For the (nu(mu) <-> nu(e)) transitions, the energy dependence of the new A(mu e)(T;CPT) component is like the matter-induced term A(mu e)(CP;CPT) of the CP asymmetry which is odd under a change of the neutrino mass hierarchy. We have thus completed the physics involved in all observable asymmetries in matter by means of their disentanglement into the three independent components, genuine A(alpha beta)(CP;T) and fake A(alpha beta)(CP;CPT) and A(alpha beta)(T;CPT).  
  Address [Bernabeu, Jose] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Valencia, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462327100001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3961  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Segarra, A. url  doi
openurl 
  Title Stimulated transitions in resonant atom Majorana mixing Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 017 - 16pp  
  Keywords Neutrino Physics; Beyond Standard Model; Global Symmetries  
  Abstract Massive neutrinos demand to ask whether they are Dirac or Majorana particles. Majorana neutrinos are an irrefutable proof of physics beyond the Standard Model. Neutrinoless double electron capture is not a process but a virtual Delta L = 2 mixing between a parent (A)Z atom and a daughter (A)(Z – 2) excited atom with two electron holes. As a mixing between two neutral atoms and the observable signal in terms of emitted two-hole X-rays, the strategy, experimental signature and background are different from neutrinoless double beta decay. The mixing is resonantly enhanced for almost degeneracy and, under these conditions, there is no irreducible background from the standard two-neutrino channel. We reconstruct the natural time history of a nominally stable parent atom since its production either by nature or in the laboratory. After the time periods of atom oscillations and the decay of the short-lived daughter atom, at observable times the relevant 'stationary" states are the mixed metastable long-lived state and the non-orthogonal short-lived excited state, as well as the ground state of the daughter atom. We find that they have a natural population inversion which is most appropriate for exploiting the bosonic nature of the observed atomic transitions radiation. Among different observables of the atom Majorana mixing, we include the enhanced rate of stimulated X-ray emission from the long-lived metastable state by a high-intensity X-ray beam: a gain factor of 100 can be envisaged at current XFEL facilities. On the other hand, the historical population of the daughter atom ground state can be probed by exciting it with a current pulsed optical laser, showing the characteristic absorption lines: the whole population can be excited in a shorter time than typical pulse duration.  
  Address [Bernabeu, Jose] Univ Valencia, CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000424101600008 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3475  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Segarra, A. url  doi
openurl 
  Title Signatures of the genuine and matter-induced components of the CP violation asymmetry in neutrino oscillations Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 063 - 26pp  
  Keywords CP violation; Discrete Symmetries; Neutrino Physics  
  Abstract CP asymmetries for neutrino oscillations in matter can be disentangled into the matter-induced CPT-odd (T-invariant) component and the genuine T-odd (CPT-invariant) component. For their understanding in terms of the relevant ingredients, we develop a new perturbative expansion in both m2| without any assumptions between m2 and a, and study the subtleties of the vacuum limit in the two terms of the CP asymmetry, moving from the CPT-invariant vacuum limit a 0 to the T-invariant limit m20. In the experimental region of terrestrial accelerator neutrinos, we calculate their approximate expressions from which we prove that, at medium baselines, the CPT-odd component is small and nearly -independent, so it can be subtracted from the experimental CP asymmetry as a theoretical background, provided the hierarchy is known. At long baselines, on the other hand, we find that (i) a Hierarchy-odd term in the CPT-odd component dominates the CP asymmetry for energies above the first oscillation node, and (ii) the CPT-odd term vanishes, independent of the CP phase , at E = 0.92 GeV (L/1300 km) near the second oscillation maximum, where the T-odd term is almost maximal and proportional to sin . A measurement of the CP asymmetry in these energy regions would thus provide separate information on (i) the neutrino mass ordering, and (ii) direct evidence of genuine CP violation in the lepton sector.  
  Address [Bernabeu, Jose] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000449817300002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3801  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Segarra, A. url  doi
openurl 
  Title Disentangling Genuine from Matter-Induced CP Violation in Neutrino Oscillations Type Journal Article
  Year 2018 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 121 Issue 21 Pages 211802 - 5pp  
  Keywords  
  Abstract We prove that, in any flavor transition, neutrino oscillation CP-violating asymmetries in matter have two disentangled components: (i) a CPT-odd T-invariant term, non-vanishing iff there are interactions with matter, and (ii) a T-odd CPT-invariant term, non-vanishing iff there is genuine CP violation. As function of the baseline, these two terms are distinct L-even and L-odd observables to separately test (i) matter effects sensitive to the neutrino hierarchy and (ii) genuine CP violation in the neutrino sector. For the golden nu(mu) -> nu(e) channel, the different energy distributions of the two components provide a signature of their separation. At long baselines, they show oscillations in the low and medium energy regions, with zeros at different positions and peculiar behavior around the zeros. We discover a magic energy E = (0.91 +/- 0.01) GeV at L = 1300 km with vanishing CPT-odd component and maximal genuine CP asymmetry proportional to sin delta, with delta the weak CP phase. For energies above 1.5 GeV, the sign of the CP asymmetry discriminates the neutrino hierarchy.  
  Address [Bernabeu, Jose] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000451010600005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3815  
Permanent link to this record
 

 
Author (up) Segarra, A.; Bernabeu, J. url  doi
openurl 
  Title Absolute neutrino mass and the Dirac/Majorana distinction from the weak interaction of aggregate matter Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 9 Pages 093004 - 6pp  
  Keywords  
  Abstract The 2 nu-mediated force has a range of microns, well beyond the atomic scale. The effective potential is built from the t-channel absorptive part of the scattering amplitude and depends on neutrino properties on shell. We demonstrate that neutral aggregate matter has a weak charge and calculate the matrix of six coherent charges for its interaction with definite-mass neutrinos. Near the range of the potential the neutrino pair is nonrelativistic, leading to observable absolute mass and Dirac/Majorana distinction via different r-dependence and violation of the weak equivalence principle.  
  Address [Segarra, Alejandro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000532654200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4397  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva