|   | 
Details
   web
Records
Author Khosa, C.K.; Sanz, V.; Soughton, M.
Title Using machine learning to disentangle LHC signatures of Dark Matter candidates Type Journal Article
Year 2021 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 10 Issue 6 Pages (down) 151 - 26pp
Keywords
Abstract We study the prospects of characterising Dark Matter at colliders using Machine Learning (ML) techniques. We focus on the monojet and missing transverse energy (MET) channel and propose a set of benchmark models for the study: a typical WIMP Dark Matter candidate in the form of a SUSY neutralino, a pseudo-Goldstone impostor in the shape of an Axion-Like Particle, and a light Dark Matter impostor whose interactions are mediated by a heavy particle. All these benchmarks are tensioned against each other, and against the main SM background (Z+jets). Our analysis uses both the leading-order kinematic features as well as the information of an additional hard jet. We explore different representations of the data, from a simple event data sample with values of kinematic variables fed into a Logistic Regression algorithm or a Fully Connected Neural Network, to a transformation of the data into images related to probability distributions, fed to Deep and Convolutional Neural Networks. We also study the robustness of our method against including detector effects, dropping kinematic variables, or changing the number of events per image. In the case of signals with more combinatorial possibilities (events with more than one hard jet), the most crucial data features are selected by performing a Principal Component Analysis. We compare the performance of all these methods, and find that using the 2D images of the combined information of multiple events significantly improves the discrimination performance.
Address [Khosa, Charanjit Kaur; Sanz, Veronica; Soughton, Michael] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England, Email: Charanjit.Kaur@sussex.ac.uk;
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:000680038800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4927
Permanent link to this record
 

 
Author Lessa, A.; Sanz, V.
Title Going beyond Top EFT Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages (down) 107 - 29pp
Keywords SMEFT; Dark Matter at Colliders; Supersymmetry
Abstract We present a new way to interpret Top Standard Model measurements going beyond the SMEFT framework. Instead of the usual paradigm in Top EFT, where the main effects come from tails in momenta distributions, we propose an interpretation in terms of new physics which only shows up at loop-level. The effects of these new states, which can be lighter than required within the SMEFT, appear as distinctive structures at high momenta, but may be suppressed at the tails of distributions. As an illustration of this phenomena, we present the explicit case of a UV model with a Z \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{Z} $$\end{document} 2 symmetry, including a Dark Matter candidate and a top-partner. This simple UV model reproduces the main features of this class of signatures, particularly a momentum-dependent form factor with more structure than the SMEFT. As the new states can be lighter than in SMEFT, we explore the interplay between the reinterpretation of direct searches for colored states and Dark Matter, and Top measurements, made by ATLAS and CMS in the differential t t over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document} final state. We also compare our method with what one would expect using the SMEFT reinterpretation, finding that using the full loop information provides a better discriminating power.
Address [Lessa, Andre] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil, Email: andre.lessa@ufabc.edu.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001205498200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6108
Permanent link to this record
 

 
Author Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V.
Title Faking ZZZ vertices at the LHC Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages (down) 098 - 20pp
Keywords SMEFT; Specific BSM Phenomenology
Abstract Searches for anomalous neutral triple gauge boson couplings (NTGCs) provide important tests for the gauge structure of the standard model. At the LHC, NTGCs are searched for via the process pp -> ZZ -> 4l, where the two Z-bosons are on-shell. In this paper, we discuss how the same process can occur through tree-level diagrams just adding a vector-like quark (VLQ) to the standard model. Since NTGCs are generated in standard model effective theory (SMEFT) only at 1-loop order, vector like quarks could be an important alternative interpretation to, and background for, NTGC searches. Here, we construct a simple example model, discuss low-energy constraints and estimate current and future sensitivities on the model parameters from pp -> ZZ -> 4l searches.
Address [Cepedello, Ricardo] Univ Granada, Dept Fis Teor & Cosmos, Campus Fuentenueva, E-18071 Granada, Spain, Email: ricepe@ugr.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001376065200003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6371
Permanent link to this record
 

 
Author Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V.
Title SMEFT goes dark: Dark Matter models for four-fermion operators Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages (down) 081 - 47pp
Keywords SMEFT; Dark Matter at Colliders; Specific BSM Phenomenology
Abstract We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.
Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001067194100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5688
Permanent link to this record
 

 
Author Esser, F.; Madigan, M.; Sanz, V.; Ubiali, M.
Title On the coupling of axion-like particles to the top quark Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages (down) 063 - 39pp
Keywords
Abstract In this paper we explore the coupling of a light axion-like particle (ALP) to top quarks. We use high-energy LHC probes, and examine both the direct probe to this coupling in associated production of a top-pair with an ALP, and the indirect probe through loop-induced gluon fusion to an ALP leading to top pairs. Using the latest LHC Run II data, we provide the best limit on this coupling. We also compare these limits with those obtained from loop-induced couplings in diboson final states, finding that the +MET channel is the best current handle on this coupling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6083
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V.
Title Anomaly Awareness Type Journal Article
Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 15 Issue 2 Pages (down) 053 - 24pp
Keywords
Abstract We present a new algorithm for anomaly detection called Anomaly Awareness. The algorithm learns about normal events while being made aware of the anomalies through a modification of the cost function. We show how this method works in different Particle Physics situations and in standard Computer Vision tasks. For example, we apply the method to images from a Fat Jet topology generated by Standard Model Top and QCD events, and test it against an array of new physics scenarios, including Higgs production with EFT effects and resonances decaying into two, three or four subjets. We find that the algorithm is effective identifying anomalies not seen before, and becomes robust as we make it aware of a varied-enough set of anomalies.
Address [Khosa, Charanjit K.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, England
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:001048488200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5610
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V.; Soughton, M.
Title A simple guide from machine learning outputs to statistical criteria in particle physics Type Journal Article
Year 2022 Publication Scipost Physics Core Abbreviated Journal SciPost Phys. Core
Volume 5 Issue 4 Pages (down) 050 - 31pp
Keywords
Abstract In this paper we propose ways to incorporate Machine Learning training outputs into a study of statistical significance. We describe these methods in supervised classification tasks using a CNN and a DNN output, and unsupervised learning based on a VAE. As use cases, we consider two physical situations where Machine Learning are often used: high-pT hadronic activity, and boosted Higgs in association with a massive vector boson.
Address [Khosa, Charanjit Kaur] Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England, Email: Charanjit.Kaur@bristol.ac.uk;
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000929724800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5475
Permanent link to this record
 

 
Author Escudero, M.; Rius, N.; Sanz, V.
Title Sterile neutrino portal to Dark Matter I: the U(1)(B-L) case Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages (down) 045 - 27pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract In this paper we explore the possibility that the sterile neutrino and Dark Matter sectors in the Universe have a common origin. We study the consequences of this assumption in the simple case of coupling the dark sector to the Standard Model via a global U(1)(B-L), broken down spontaneously by a dark scalar. This dark scalar provides masses to the dark fermions and communicates with the Higgs via a Higgs portal coupling. We find an interesting interplay between Dark Matter annihilation to dark scalars – the CP-even that mixes with the Higgs and the CP-odd which becomes a Goldstone boson, the Majoron and heavy neutrinos, as well as collider probes via the coupling to the Higgs. Moreover, Dark Matter annihilation into sterile neutrinos and its subsequent decay to gauge bosons and quarks, charged leptons or neutrinos lead to indirect detection signatures which are close to current bounds on the gamma ray flux from the galactic center and dwarf galaxies.
Address [Escudero, Miguel; Rius, Nuria] Univ Valencia, Dept Fis Teor, CSIC, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: miguel.escudero@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000394747600008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3018
Permanent link to this record
 

 
Author Cranmer, K. et al; Sanz, V.
Title Publishing statistical models: Getting the most out of particle physics experiments Type Journal Article
Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 12 Issue 1 Pages (down) 037 - 55pp
Keywords
Abstract The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases – including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits – we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results.
Address [Cranmer, Kyle; Held, Alexander] NYU, New York, NY 10003 USA, Email: kyle.cranmer@nyu.edu;
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:000807448000032 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5255
Permanent link to this record
 

 
Author Gomez Ambrosio, R.; ter Hoeve, J.; Madigan, M.; Rojo, J.; Sanz, V.
Title Unbinned multivariate observables for global SMEFT analyses from machine learning Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages (down) 033 - 66pp
Keywords SMEFT; Higgs Properties
Abstract Theoretical interpretations of particle physics data, such as the determination of the Wilson coefficients of the Standard Model Effective Field Theory (SMEFT), often involve the inference of multiple parameters from a global dataset. Optimizing such interpretations requires the identification of observables that exhibit the highest possible sensitivity to the underlying theory parameters. In this work we develop a flexible open source frame-work, ML4EFT, enabling the integration of unbinned multivariate observables into global SMEFT fits. As compared to traditional measurements, such observables enhance the sensitivity to the theory parameters by preventing the information loss incurred when binning in a subset of final-state kinematic variables. Our strategy combines machine learning regression and classification techniques to parameterize high-dimensional likelihood ratios, using the Monte Carlo replica method to estimate and propagate methodological uncertainties. As a proof of concept we construct unbinned multivariate observables for top-quark pair and Higgs+Z production at the LHC, demonstrate their impact on the SMEFT parameter space as compared to binned measurements, and study the improved constraints associated to multivariate inputs. Since the number of neural networks to be trained scales quadratically with the number of parameters and can be fully parallelized, the ML4EFT framework is well-suited to construct unbinned multivariate observables which depend on up to tens of EFT coefficients, as required in global fits.
Address [Ambrosio, Raquel Gomez] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Milan, Italy, Email: raquel.gomezambrosio@unito.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000946004000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5501
Permanent link to this record