toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liang, W.H.; Sakai, S.; Xie, J.J.; Oset, E. url  doi
openurl 
  Title Triangle singularity enhancing isospin violation in (B)over-bar(s)(0)-> J/psi pi(0)f(0)(980) Type Journal Article
  Year 2018 Publication (up) Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 42 Issue 4 Pages 044101 - 9pp  
  Keywords triangle singularity; light scalar meson; isospin violation; bottom meson decay  
  Abstract We perform calculations for the (B) over bar (0)(s)-> J/psi pi(0)f(0)(980) and (B) over bar (0)(s)-> J/psi pi(0)a(0)(980) reactions, showing that the first is isospin-suppressed while the second is isospin-allowed. The reaction proceeds via a triangle mechanism, with (B) over bar (0)(s)-> J/psi K*(K) over bar +c.c., followed by the decay K*-> K pi and a further fusion of K (K) over bar into the f(0)(980) or a(0)(980). We show that the mechanism develops a singularity around the pi(0)f(0)(980) or pi(0)a(0)(980) invariant mass of 1420 MeV, where the pi(0)f(0) and pi(0)a(0) decay modes are magnified and also the ratio of pi(0)f(0) to pi(0)a(0) production. Using experimental information for the (B) over bar (0)(s)-> J/psi K*(K) over bar +c.c. decay, we are able to obtain absolute values for the reactions studied which fall into the experimentally accessible range. The reactions proposed and the observables evaluated, when contrasted with actual experiments, should be very valuable to obtain information on the nature of the low lying scalar mesons.  
  Address [Liang, Wei-Hong] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: liangwh@gxnu.edu.cn;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000430884300013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3573  
Permanent link to this record
 

 
Author Sakai, S.; Oset, E.; Ramos, A. url  doi
openurl 
  Title Triangle singularities in B- -> K- pi- D(s0)+ and B- -> K- pi- D(s1)+ Type Journal Article
  Year 2018 Publication (up) European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 54 Issue 1 Pages 10 - 14pp  
  Keywords  
  Abstract We study the appearance of structures in the decay of the B- into K-pi D--(s0)+ (2317) and K-pi D--(s1)+ (2460) final states by forming invariant mass distributions of pi D--(s0)+ and pi D--(s1)+ pairs, respectively. The structure in the distribution is associated to the kinematical triangle singularity that appears when the B- -> K- K*(0) D-0 (B- -> K- K*(0) D*(0)) decay process is followed by the decay of the K*(0) into pi(-) K+ and the subsequent rescattering of the K+ D-0 (K+ D*(0)) pair forming the D-s0(+) (2317) (D-s1(+) (2460)) resonance. We find this type of non-resonant peaks at 2850MeV in the invariant mass of pi D--(s0) pairs from B- -> K- pi(-) D-s0(+) (2317) decays and around 3000MeV in the invariant mass of pi D--(s1)+ pairs from B- -> K- pi(-) D-s1(+)(2460) decays. By employing the measured branching ratios of the B- -> K- K*(0) D-0 and B- -> K- K*(0) D*(0) decays, we predict the branching ratios for the processes B- into K-pi D--(s0)+ (2317) K-pi D--(s1)+ (2460), in the vicinity of the triangle singularity peak, to be about 8 x 10(-6) and 1 x 10(-6), respectively. The observation of this reaction would also give extra support to the molecular picture of the D-s0(+)(2317) and D-s1(+)(2460).  
  Address [Sakai, S.; Oset, E.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor,Ctr Mixto, Aptdo 22085, Valencia 46071, Spain, Email: shuntaro.sakai@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000423446700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3462  
Permanent link to this record
 

 
Author Dai, L.R.; Pavao, R.; Sakai, S.; Oset, E. url  doi
openurl 
  Title tau(-) -> nu tau M1 M2, with M1, M2 pseudoscalar or vector mesons Type Journal Article
  Year 2019 Publication (up) European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 55 Issue 2 Pages 20 - 22pp  
  Keywords  
  Abstract .We perform a calculation of the -M1M2, with M1,M2 either pseudoscalar or vector mesons using the basic weak interaction and angular momentum algebra to relate the different processes. The formalism also leads to a different interpretation of the role played by G-parity in these decays. We also observe that, while PPp-wave production is compatible with chiral perturbation theory and experiment, VP and VVp-wave production is clearly incompatible with experiment and we develop the formalism also in this case, producing the VP or VV pairs in s-wave. We compare our results with experiment and other theoretical approaches for rates and invariant mass distributions and make predictions for unmeasured decays. We show the value of these reactions, particularly if the M1M2 mass distribution is measured, as a tool to learn about the meson-meson interaction and the nature of some resonances, coupling to two mesons, which are produced in such decays.  
  Address [Dai, L. R.] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: dailr@lnnu.edu.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000458818600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3910  
Permanent link to this record
 

 
Author Pavao, R.P.; Sakai, S.; Oset, E. url  doi
openurl 
  Title Triangle singularities in B- -> D*(0)pi(-)pi(0)eta and B- -> D*(0)pi(-)pi(+)pi(-) Type Journal Article
  Year 2017 Publication (up) European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 9 Pages 599 - 8pp  
  Keywords  
  Abstract The possible role of the triangle mechanism in the B- decay into D*(0)pi(-)pi(0)eta and D*(0)pi(-)pi(+)pi(-) is investigated. In this process, the triangle singularity appears from the decay of B- into D*K-0(-) K*(0) followed by the decay of K-*0 into pi(-) K+ and the fusion of the K+ K-, which forms the a(0)(980) or f(0)(980), which finally decay into pi(0)eta or pi(+)pi(-), respectively. The triangle mechanism from the (K) over bar * K (K) over bar loop generates a peak around 1420 MeV in the invariant mass of pi(-) a(0) or pi(-) f(0), and it gives sizable branching fractions, Br(B- -> D*(0)pi(-) a(0); a(0) -> pi(0)eta) = (1.66 +/- 0.45) x 10(-6) and Br(B- -> D*(0)pi(-) f(0); f(0) -> pi(+)pi(-)) = (2.82 +/- 0.75) x 10(-6).  
  Address [Pavao, R.; Sakai, S.; Oset, E.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor,Ctr Mixto, Aptdo 22085, Valencia 46071, Spain, Email: rpavao@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000410891900001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3297  
Permanent link to this record
 

 
Author Debastiani, V.R.; Sakai, S.; Oset, E. url  doi
openurl 
  Title Considerations on the Schmid theorem for triangle singularities Type Journal Article
  Year 2019 Publication (up) European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 1 Pages 69 - 13pp  
  Keywords  
  Abstract We investigate the Schmid theorem, which states that if one has a tree level mechanism with a particle decaying to two particles and one of them decaying posteriorly to two other particles, the possible triangle singularity developed by the mechanism of elastic rescattering of two of the three decay particles does not change the cross section provided by the tree level. We investigate the process in terms of the width of the unstable particle produced in the first decay and determine the limits of validity and violation of the theorem. One of the conclusions is that the theorem holds in the strict limit of zero width of that resonance, in which case the strength of the triangle diagram becomes negligible compared to the tree level. Another conclusion, on the practical side, is that for realistic values of the width, the triangle singularity can provide a strength comparable or even bigger than the tree level, which indicates that invoking the Schmid theorem to neglect the triangle diagram stemming from elastic rescattering of the tree level should not be done. Even then, we observe that the realistic case keeps some memory of the Schmid theorem, which is visible in a peculiar interference pattern with the tree level.  
  Address [Debastiani, V. R.; Sakai, S.; Oset, E.] Ctr Mixto Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor, Aptdo 22085, Valencia 46071, Spain, Email: vinicius.rodrigues@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456999600008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3904  
Permanent link to this record
 

 
Author Nieves, J.; Pavao, R.; Sakai, S. url  doi
openurl 
  Title Lambda(b) decays into Lambda cl(nu)over-barl and Lambda c*pi(-) [ Lambda(c)* = Lambda(c)( 2595) and Lambda(c)(2625)] and heavy quark spin symmetry Type Journal Article
  Year 2019 Publication (up) European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 5 Pages 417 - 20pp  
  Keywords  
  Abstract We study the implications for bc=c(2595) and c(2625)] decays that can be deduced from heavy quark spin symmetry (HQSS). Identifying the odd parity c(2595) and c(2625) resonances as HQSS partners, with total angular momentum-parity jqP=1- for the light degrees of freedom, we find that the ratios (bc(2595)-)/(bc(2625)-) and (bc(2595)) agree, within errors, with the experimental values given in the Review of Particle Physics. We discuss how future, and more precise, measurements of the above branching fractions could be used to shed light into the inner HQSS structure of the narrow c(2595) odd-parity resonance. Namely, we show that such studies would constrain the existence of a sizable jqP</mml:msubsup>=0- component in its wave-function, and/or of a two-pole pattern, in analogy to the case of the similar (1405) resonance in the strange sector, as suggested by most of the approaches that describe the c(2595) as a hadron molecule. We also investigate the lepton flavor universality ratios R[c]=B( may be affected by a new source of potentially large systematic errors if there are two) poles.  
  Address [Nieves, J.; Pavao, R.] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: shsakai@itp.ac.cn  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000468374700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4021  
Permanent link to this record
 

 
Author Sakai, S.; Hosaka, A.; Nagahiro, H. url  doi
openurl 
  Title Effect of the final state interaction of eta ' N on the eta ' photoproduction off the nucleon Type Journal Article
  Year 2017 Publication (up) Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 95 Issue 4 Pages 045206 - 9pp  
  Keywords  
  Abstract We investigate the eta' photoproduction off the nucleon with a particular interest in the effect of the final-state interaction (FSI) of the eta' meson and nucleon (eta' N) based on the three-flavor linear sigma model. We find an enhancement in the cross section of the eta' photoproduction near the eta' N-threshold energy owing to the eta' N FSI. With the eta' meson at forward angles, the energy dependence near the eta' N threshold is well reproduced with the eta' N FSI. The cross section at backward angles can also be a good probe to investigate the strength of the eta' N interaction.  
  Address [Sakai, Shuntaro; Hosaka, Atsushi; Nagahiro, Hideko] Osaka Univ, Res Ctr Nucl Phys, Ibaraki, Osaka 5670047, Japan, Email: shsakai@rcnp.osaka-u.ac.jp  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400141200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3094  
Permanent link to this record
 

 
Author Debastiani, V.R.; Sakai, S.; Oset, E. url  doi
openurl 
  Title Role of a triangle singularity in the pi N(1535) contribution to gamma p -> p pi(0) eta Type Journal Article
  Year 2017 Publication (up) Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 96 Issue 2 Pages 025201 - 7pp  
  Keywords  
  Abstract We have studied the gamma p -> p pi(0) eta reaction paying attention to the two main mechanisms at low energies, the gamma p ->Delta(1700) -> eta Delta(1232) and the gamma p -> Delta(1700) -> pi N(1535). Both are driven by the photoexcitation of the Delta (1700) and the second one involves a mechanism that leads to a triangle singularity. We are able to evaluate quantitatively the cross section for this process and show that it agrees with the experimental determination. Yet there are some differences with the standard partial wave analysis which does not include explicitly the triangle singularity. The exercise also shows the convenience of exploring possible triangle singularities in other reactions and how a standard partial wave analysis can be extended to accommodate them.  
  Address [Debastiani, V. R.] Univ Valencia, Ctr Mixto, CSIC, Inst Invest Paterna,Dept Fis Teor, Apartado 22085, Valencia 46071, Spain, Email: vinicius.rodrigues@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406755100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3227  
Permanent link to this record
 

 
Author Bayar, M.; Pavao, R.; Sakai, S.; Oset, E. url  doi
openurl 
  Title Role of the triangle singularity in Lambda(1405) production in the pi(-) p -> K-0 pi Sigma and pp -> pK(+) pi Sigma processes Type Journal Article
  Year 2018 Publication (up) Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 97 Issue 3 Pages 035203 - 12pp  
  Keywords  
  Abstract We have investigated the cross section for the pi(-) p -> K-0 pi Sigma and pp -> pK(+) pi Sigma reactions, paying attention to a mechanism that develops a triangle singularity. The triangle diagram is realized by the decay of a N* to K* Sigma and the K* decay into pi K, and the pi Sigma finally merges into Lambda (1405). The mechanism is expected to produce a peak around 2140 MeV in the K Lambda (1405) invariant mass. We found that a clear peak appears around 2100 MeV in the K Lambda (1405) invariant mass, which is about 40 MeV lower than the expectation, and that is due to the resonance peak of a N* resonance which plays a crucial role in the K* Sigma production. The mechanism studied produces the peak of the Lambda (1405) around or below 1400 MeV, as is seen in the pp -> pK(+) pi Sigma HADES experiment.  
  Address [Bayar, M.] Kocaeli Univ, Dept Phys, TR-41380 Izmit, Turkey, Email: melahat.bayar@kocaeli.edu.tr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000426780000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3510  
Permanent link to this record
 

 
Author Pavao, R.; Sakai, S.; Oset, E. url  doi
openurl 
  Title Production of N*(1535) and N*(1650) in Lambda(c)-> (K)over-bar(0)eta p (pi N) decay Type Journal Article
  Year 2018 Publication (up) Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 98 Issue 1 Pages 015201 - 8pp  
  Keywords  
  Abstract To study the properties of the N*(1535) and N*(1650), we calculate the mass distributions of MB in the Lambda(c) -> (K) over bar (MB)-M-0 decay, with MB = pi N(I = 1/2), eta p, and K Sigma(I = 1/2). We do this by calculating the tree-level and loop contributions, mixing pseudoscalar-baryon and vector-baryon channels using the local hidden gauge formalism. The loop contributions for each channel are calculated using the chiral unitary approach. We observe that for the eta N mass distribution only the N* (1535) is seen, with the N* (1650) contributing to the width of the curve, but for the pi N mass distribution both resonances are clearly visible. In the case of MB = K Sigma, we found that the strength of the K E mass distribution is smaller than that of the mass distributions of the pi N and eta p in the Lambda(+)(c)-> (K) over bar (0)pi N and Lambda(+)(c) -> (K) over bar (0)eta p processes, in spite of this channel having a large coupling to the N* (1650). This is because the K Sigma pair production is suppressed in the primary production from the Lambda(c) decay.  
  Address [Pavao, R.] Ctr Mixto Univ Valencia, CSIC Inst Invest Paterna, Dept Fis Teor, Valencia 46071, Spain, Email: rpavao@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000436940200003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3643  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva