toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Aparici, A.; Herrero-Garcia, J.; Rius, N.; Santamaria, A. url  doi
openurl 
  Title On the nature of the fourth generation neutrino and its implications Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 030 - 31pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We consider the neutrino sector of a Standard Model with four generations. While the three light neutrinos can obtain their masses from a variety of mechanisms with or without new neutral fermions, fourth-generation neutrinos need at least one new relatively light right-handed neutrino. If lepton number is not conserved this neutrino must have a Majorana mass term whose size depends on the underlying mechanism for lepton number violation. Majorana masses for the fourth-generation neutrinos induce relative large two-loop contributions to the light neutrino masses which could be even larger than the cosmological bounds. This sets strong limits on the mass parameters and mixings of the fourth-generation neutrinos.  
  Address [Aparici, Alberto] Univ Valencia, CSIC, Dept Fis Teor, Valencia 46071, Spain, Email: alberto.aparici@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307298400030 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1157  
Permanent link to this record
 

 
Author (up) Aparici, A.; Herrero-Garcia, J.; Rius, N.; Santamaria, A. url  doi
openurl 
  Title Neutrino masses from new generations Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 122  
  Keywords  
  Abstract We reconsider the possibility that Majorana masses for the three known neutrinos are generated radiatively by the presence of a fourth generation and one right-handed neutrino with Yukawa couplings and a Majorana mass term. We find that the observed light neutrino mass hierarchy is not compatible with low energy universality bounds in this minimal scenario, but all present data can be accommodated with five generations and two right-handed neutrinos. Within this framework, we explore the parameter space regions which are currently allowed and could lead to observable effects in neutrinoless double beta decay, mu-e conversion in nuclei and μ-> e gamma experiments. We also discuss the detection prospects at LHC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293741500058 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 759  
Permanent link to this record
 

 
Author (up) Bernal, N.; Donini, A.; Folgado, M.G.; Rius, N. url  doi
openurl 
  Title FIMP Dark Matter in Clockwork/Linear Dilaton extra-dimensions Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 061 - 29pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Large Extra Dimensions  
  Abstract We study the possibility that Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the Standard Model particles in the framework of a Clockwork/Linear Dilaton (CW/LD) model. We restrict here to the case in which the DM particles are scalar fields. This paper extends our previous study of FIMP's in Randall-Sundrum (RS) warped extra-dimensions. As it was the case in the RS scenario, also in the CW/LD model we find a significant region of the parameter space in which the observed DM relic abundance can be reproduced with scalar DM mass in the MeV range, with a reheating temperature varying from 10 GeV to 10(9) GeV. We comment on the similarities of the results in both extra-dimensional models.  
  Address [Bernal, Nicolas] Univ Antonio Narino, Ctr Invest, Carrera 3 Este 47A-15, Bogota, Colombia, Email: nicolas.bernal@uan.edu.co;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000639271100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4792  
Permanent link to this record
 

 
Author (up) Bernal, N.; Donini, A.; Folgado, M.G.; Rius, N. url  doi
openurl 
  Title Kaluza-Klein FIMP dark matter in warped extra-dimensions Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 142 - 31pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM  
  Abstract We study for the first time the case in which Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the standard model particles in an extra-dimensional Randall-Sundrum scenario. We assume that both the dark matter and the standard model are localized in the IR-brane and only interact via gravitational mediators, namely the graviton, the Kaluza-Klein gravitons and the radion. We found that in the early Universe DM could be generated via two main processes: the direct freeze-in and the sequential freeze-in. The regions where the observed DM relic abundance is produced are largely compatible with cosmological and collider bounds.  
  Address [Bernal, Nicolas] Univ Antonio Narino, Ctr Invest, Carrera 3 Este 47A-15, Bogota, Colombia, Email: nicolas.bernal@uan.edu.co;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000574609100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4552  
Permanent link to this record
 

 
Author (up) Blennow, M.; Dasgupta, B.; Fernandez-Martinez, E.; Rius, N. url  doi
openurl 
  Title Aidnogenesis via leptogenesis and dark sphalerons Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 014 - 14pp  
  Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Neutrino Physics  
  Abstract We discuss aidnogenesis,(1) i.e. the generation of a dark matter asymmetry, via new sphaleron processes associated to an extra non-abelian gauge symmetry common to both the visible and the dark sectors. Such a theory can naturally produce an abundance of asymmetric dark matter which is of the same size as the lepton and baryon asymmetries, as suggested by the similar sizes of the observed baryonic and dark matter energy content, and provide a definite prediction for the mass of the dark matter particle. We discuss in detail a minimal realization in which the Standard Model is only extended by dark matter fermions which form “dark baryons” through an SU(3) interaction, and a (broken) horizontal symmetry that induces the new sphalerons. The dark matter mass is predicted to be similar to 6GeV, close to the region favored by DAMA and CoGeNT. Furthermore, a remnant of the horizontal symmetry should be broken at a lower scale and can also explain the Tevatron dimuon anomaly.  
  Address [Blennow, Mattias; Fernandez-Martinez, Enrique] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: blennow@mppmu.mpg.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289295200014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 611  
Permanent link to this record
 

 
Author (up) Caputo, A.; Hernandez, P.; Rius, N. url  doi
openurl 
  Title Leptogenesis from oscillations and dark matter Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 7 Pages 574 - 17pp  
  Keywords  
  Abstract An extension of the Standard Model with Majorana singlet fermions in the 1-100GeV range can explain the light neutrino masses and give rise to a baryon asymmetry at freeze-in of the heavy states, via their CP-violating oscillations. In this paper we consider extending this scenario to also explain dark matter. We find that a very weakly coupled B-L gauge boson, an invisible QCD axion model, and the singlet majoron model can simultaneously account for dark matter and the baryon asymmetry.  
  Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: andrea.caputo@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000475617900002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4090  
Permanent link to this record
 

 
Author (up) Casas, J.A.; Moreno, J.M.; Rius, N.; Ruiz de Austri, R.; Zaldivar, B. url  doi
openurl 
  Title Fair scans of the seesaw. Consequences for predictions on LFV processes Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 034 - 22pp  
  Keywords Neutrino Physics; Supersymmetric Standard Model  
  Abstract We give a straightforward procedure to scan the seesaw parameter-space, using the common “R-parametrization”, in a complete way. This includes a very simple rule to incorporate the perturbativity requirement as a condition for the entries of the R-matrix. As a relevant application, we show that the somewhat propagated belief that BR(mu -> e, gamma) in supersymmetric seesaw models depends strongly on the value of theta(13) is an “optical effect” produced by incomplete scans, and does not hold after a careful analytical and numerical study. When the complete scan is done, BR(mu -> e, gamma) gets very insensitive to theta(13). This holds even if the right-handed neutrino masses are kept constant or under control (as is required for succesful leptogenesis). In most cases the values of BR(mu -> e, gamma) are larger than the experimental upper bound. Including (unflavoured) leptogenesis does not introduce any further dependence on theta(13), although decreases the typical value of BR(mu -> e, gamma).  
  Address [Alberto Casas, J.; Moreno, Jesus M.; Zaldivar, Bryam] UAM, IFT UAM CSIC, Inst Fis Teor, Madrid 28049, Spain, Email: alberto.casas@uam.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289295200034 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 612  
Permanent link to this record
 

 
Author (up) Chun, E.J.; Cvetic, G.; Dev, P.S.B.; Drewes, M.; Fong, C.S.; Garbrecht, B.; Hambye, T.; Harz, J.; Hernandez, P.; Kim, C.S.; Molinaro, E.; Nardi, E.; Racker, J.; Rius, N.; Zamora-Saa, J. url  doi
openurl 
  Title Probing leptogenesis Type Journal Article
  Year 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 33 Issue 5-6 Pages 1842005 - 99pp  
  Keywords Neutrino interactions; nonstandard-model neutrinos; right-handed neutrinos; extensions of electroweak gauge sector; supersymmetric models  
  Abstract The focus of this paper lies on the possible experimental tests of leptogenesis scenarios. We consider both leptogenesis generated from oscillations, as well as leptogenesis from out-of-equilibrium decays. As the Akhmedov-Rubakov-Smirnov (ARS) mechanism allows for heavy neutrinos in the GeV range, this opens up a plethora of possible experimental tests, e.g. at neutrino oscillation experiments, neutrinoless double beta decay, and direct searches for neutral heavy leptons at future facilities. In contrast, testing leptogenesis from out-of-equilibrium decays is a quite difficult task. We comment on the necessary conditions for having successful leptogenesis at the TeV-scale. We further discuss possible realizations and their model specific testability in extended seesaw models, models with extended gauge sectors, and supersymmetric leptogenesis. Not being able to test high-scale leptogenesis directly, we present a way to falsify such scenarios by focusing on their washout processes. This is discussed specifically for the left-right symmetric model and the observation of a heavy W-R, as well as model independently when measuring Delta L = 2 washout processes at the LHC or neutrinoless double beta decay.  
  Address [Chun, E. J.] Korea Inst Adv Study, Seoul 02455, South Korea, Email: jharz@lpthe.jussieu.fr  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000426586100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3507  
Permanent link to this record
 

 
Author (up) Drewes, M.; Garbrecht, B.; Hernandez, P.; Kekic, M.; Lopez-Pavon, J.; Racker, J.; Rius, N.; Salvado, J.; Teresi, D. url  doi
openurl 
  Title ARS leptogenesis Type Journal Article
  Year 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 33 Issue 5-6 Pages 1842002 - 46pp  
  Keywords  
  Abstract We review the current status of the leptogenesis scenario originally proposed by Akhmedov, Rubakov and Smirnov (ARS). It takes place in the parametric regime where the right-handed neutrinos are at the electroweak scale or below and the CP-violating effects are induced by the coherent superposition of different right-handed mass eigenstates. Two main theoretical approaches to derive quantum kinetic equations, the Hamiltonian time evolution as well as the Closed-Time-Path technique are presented, and we discuss their relations. For scenarios with two right-handed neutrinos, we chart the viable parameter space. Both, a Bayesian analysis, that determines the most likely configurations for viable leptogenesis given different variants of flat priors, and a determination of the maximally allowed mixing between the light, mostly left-handed, and heavy, mostly right-handed, neutrino states are discussed. Rephasing invariants are shown to be a useful tool to classify and to understand various distinct contributions to ARS leptogenesis that can dominate in different parametric regimes. While these analyses are carried out for the parametric regime where initial asymmetries are generated predominantly from lepton-number conserving, but flavor violating effects, we also review the contributions from lepton-number violating operators and identify the regions of parameter space where these are relevant.  
  Address [Drewes, M.; Garbrecht, B.] Tech Univ Munich, Phys Dept, James Franck Str, D-85748 Garching, Germany, Email: m.pilar.hernandez@uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000426586100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3508  
Permanent link to this record
 

 
Author (up) Escudero, M.; Lopez-Pavon, J.; Rius, N.; Sandner, S. url  doi
openurl 
  Title Relaxing cosmological neutrino mass bounds with unstable neutrinos Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 119 - 44pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics  
  Abstract At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model (Lambda CDM), the Planck collaboration reports Sigma m(v)< 0.12 eV at 95 % CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe <tau>(nu) less than or similar to t(U), represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state nu (4) and a Goldstone boson phi, in which nu (i)-> nu (4)phi decays can loosen the neutrino mass bounds up to Sigma m(v) similar to 1 eV, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a U(1)(mu-tau) flavor symmetry, which are otherwise in tension with the current bound on Sigma m(v).  
  Address [Escudero, Miguel] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: miguel.escudero@kcl.ac.uk;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000601400500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4661  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva