|
Records |
Links |
|
Author |
van Beekveld, M.; Caron, S.; Hendriks, L.; Jackson, P.; Leinweber, A.; Otten, S.; Patrick, R.; Ruiz de Austri, R.; Santoni, M.; White, M. |
|
|
Title |
Combining outlier analysis algorithms to identify new physics at the LHC |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Journal of High Energy Physics |
Abbreviated Journal |
J. High Energy Phys. |
|
|
Volume |
09 |
Issue |
9 |
Pages |
024 - 33pp |
|
|
Keywords |
Phenomenological Models; Supersymmetry Phenomenology |
|
|
Abstract |
The lack of evidence for new physics at the Large Hadron Collider so far has prompted the development of model-independent search techniques. In this study, we compare the anomaly scores of a variety of anomaly detection techniques: an isolation forest, a Gaussian mixture model, a static autoencoder, and a beta-variational autoencoder (VAE), where we define the reconstruction loss of the latter as a weighted combination of regression and classification terms. We apply these algorithms to the 4-vectors of simulated LHC data, but also investigate the performance when the non-VAE algorithms are applied to the latent space variables created by the VAE. In addition, we assess the performance when the anomaly scores of these algorithms are combined in various ways. Using supersymmetric benchmark points, we find that the logical AND combination of the anomaly scores yielded from algorithms trained in the latent space of the VAE is the most effective discriminator of all methods tested. |
|
|
Address |
[van Beekveld, Melissa] Clarendon Lab, Rudolf Peierls Ctr Theoret Phys, 20 Pks Rd, Oxford OX1 3PU, England, Email: mcbeekveld@gmail.com; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1029-8479 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000695421600003 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
4973 |
|
Permanent link to this record |
|
|
|
|
Author |
Herrero-Garcia, J.; Patrick, R.; Scaffidi, A. |
|
|
Title |
A semi-supervised approach to dark matter searches in direct detection data with machine learning |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
|
|
Volume |
02 |
Issue |
|
Pages |
039 - 19pp |
|
|
Keywords |
|
|
|
Abstract |
The dark matter sector remains completely unknown. It is therefore crucial to keep an open mind regarding its nature and possible interactions. Focusing on the case of Weakly Interacting Massive Particles, in this work we make this general philosophy more concrete by applying modern machine learning techniques to dark matter direct detection. We do this by encoding and decoding the graphical representation of background events in the XENONnT experiment with a convolutional variational autoencoder. We describe a methodology that utilizes the `anomaly score' derived from the reconstruction loss of the convolutional variational autoencoder as well as a pre-trained standard convolutional neural network, in a semi-supervised fashion. Indeed, we observe that optimum results are obtained only when both unsupervised and supervised anomaly scores are considered together. A data set that has a higher proportion of anomaly score is deemed anomalous and deserves further investigation. Contrary to classical analyses, in principle all information about the events is used, preventing unnecessary information loss. Lastly, we demonstrate the reach of learning-focused anomaly detection in this context by comparing results with classical inference, observing that, if tuned properly, these techniques have the potential to outperform likelihood-based methods. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5495 |
|
Permanent link to this record |