toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Adhikari, R. et al; Pastor, S.; Valle, J.W.F. url  doi
openurl 
  Title A White Paper on keV sterile neutrino Dark Matter Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 025 - 247pp  
  Keywords cosmological neutrinos; dark matter experiments; dark matter theory; particle physics – cosmology connection  
  Abstract We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved – cosmology, astrophysics, nuclear, and particle physics – in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.  
  Address [Drewes, M.; Ibarra, A.; Lasserre, T.; Oberauer, L.; Schoenert, S.] Tech Univ Munich, Phys Dept & Excellence Cluster Univ, James Franck Str 1, D-85748 Garching, Germany, Email: marcodrewes@gmail.com;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399409800025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3109  
Permanent link to this record
 

 
Author (up) Bennett, J.J.; Buldgen, G.; de Salas, P.F.; Drewes, M.; Gariazzo, S.; Pastor, S.; Wong, Y.Y.Y. url  doi
openurl 
  Title Towards a precision calculation of the effective number of neutrinos N-eff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 073 - 33pp  
  Keywords cosmological neutrinos; neutrino properties; particle physics – cosmology connection; physics of the early universe  
  Abstract We present in this work a new calculation of the standard-model benchmark value for the effective number of neutrinos, N-eff(SM), that quantifies the cosmological neutrinoto-photon energy densities. The calculation takes into account neutrino flavour oscillations, finite-temperature effects in the quantum electrodynamics plasma to O(e(3)), where e is the elementary electric charge, and a full evaluation of the neutrino-neutrino collision integral. We provide furthermore a detailed assessment of the uncertainties in the benchmark N(eff)(SM )value, through testing the value's dependence on (i) optional approximate modelling of the weak collision integrals, (ii) measurement errors in the physical parameters of the weak sector, and (iii) numerical convergence, particularly in relation to momentum discretisation. Our new, recommended standard-model benchmark is N-eff(SM) 3.0440 +/- 0.0002, where the nominal uncertainty is attributed predominantly to errors incurred in the numerical solution procedure (vertical bar delta N-eff vertical bar similar to 10(-4)), augmented by measurement errors in the solar mixing angle sin(2) theta(12) (vertical bar delta N-eff vertical bar similar to 10(-4)).  
  Address [Bennett, Jack J.; Wong, Yvonne Y. Y.] Univ New South Wales, Sch Phys, Sydney Consortium Particle Phys & Cosmol, Sydney, NSW 2052, Australia, Email: j.j.bennett@unsw.edu.au;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647827600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4827  
Permanent link to this record
 

 
Author (up) Castorina, E.; Franca, U.; Lattanzi, M.; Lesgourgues, J.; Mangano, G.; Melchiorri, A.; Pastor, S. url  doi
openurl 
  Title Cosmological lepton asymmetry with a nonzero mixing angle theta(13) Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 2 Pages 023517 - 11pp  
  Keywords  
  Abstract While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle theta(13), and show that for large theta(13) the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from big bang nucleosynthesis, while the limits on the total neutrino mass from cosmological data are essentially independent of theta(13). Finally, we perform a forecast for Cosmic Origins Explorer, taken as an example of a future cosmic microwave background experiment, and find that it could improve the limits on the total lepton asymmetry approximately by up to a factor 6.6.  
  Address [Castorina, Emanuele] SISSA, I-34136 Trieste, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000306320000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1093  
Permanent link to this record
 

 
Author (up) Consiglio, R.; de Salas, P.F.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O. url  doi
openurl 
  Title PArthENoPE reloaded Type Journal Article
  Year 2018 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 233 Issue Pages 237-242  
  Keywords Primordial nucleosynthesis; Cosmology; Neutrino physics  
  Abstract We describe the main features of a new and updated version of the program PArthENoPE, which computes the abundances of light elements produced during Big Bang Nucleosynthesis. As the previous first release in 2008, the new one, PArthENoPE2.0, is publicly available and distributed from the code site, http://parthenope.na.infn.it . Apart from minor changes, which will be also detailed, the main improvements are as follows. The powerful, but not freely accessible, NAG routines have been substituted by ODEPACK libraries, without any significant loss in precision. Moreover, we have developed a Graphical User Interface (GUI) which allows a friendly use of the code and a simpler implementation of running for grids of input parameters. New Version program summary Program Title: PArthENoPE2.0 Program Files doi : http://dx.doi.org/10.17632/wvgr7d8yt9.1 Licensing provisions: GPLv3 Programming language: Fortran 77 and Python Supplementary material: User Manual available on the web page http://parthenope.na.infn.it Journal reference of previous version: Comput. Phys. Commun. 178 (2008) 956 971 Does the new version supersede the previous version?: Yes Reasons for the new version: Make the code more versatile and user friendly Summary of revisions: (1) Publicly available libraries (2) GUI for configuration Nature of problem: Computation of yields of light elements synthesized in the primordial universe Solution method: Livermore Solver for Ordinary Differential Equations (LSODE) for stiff and nonstiff systems  
  Address [Consiglio, R.; Miele, G.; Pisanti, O.] Univ Napoli Federico II, Dipartimento Fis E Pancini, Via Cintia, I-80126 Naples, Italy, Email: pisanti@na.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444667100020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3729  
Permanent link to this record
 

 
Author (up) de Salas, P.F.; Gariazzo, S.; Laveder, M.; Pastor, S.; Pisanti, O.; Truong, N. url  doi
openurl 
  Title Cosmological bounds on neutrino statistics Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 050 - 18pp  
  Keywords cosmological neutrinos; neutrino properties; big bang nucleosynthesis; cosmological parameters from CMBR  
  Abstract We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can be obtained on neutrino statistics, disfavouring a more bosonic behaviour at less than 2 sigma.  
  Address [de Salas, P. F.; Gariazzo, S.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428984100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3551  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva