toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Agullo, I.; Bonga, B.; Ribes-Metidieri, P.; Kranas, D.; Nadal-Gisbert, S. url  doi
openurl 
  Title How ubiquitous is entanglement in quantum field theory? Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 8 Pages 085005 - 25pp  
  Keywords  
  Abstract It is well known that entanglement is widespread in quantum field theory, in the following sense: every Reeh-Schlieder state contains entanglement between any two spatially separated regions. This applies, in particular, to the vacuum of a noninteracting scalar theory in Minkowski spacetime. Discussions on entanglement in field theory have focused mainly on subsystems containing infinitely many degrees of freedom-typically, the field modes that are supported within a compact region of space. In this article, we study entanglement in subsystems made of finitely many field degrees of freedom, in a free scalar theory in D + 1-dimensional Minkowski spacetime. The focus on finitely many modes of the field is motivated by the finite capabilities of real experiments. We find that entanglement between finite-dimensional subsystems is not common at all, and that one needs to carefully select the support of modes for entanglement to show up. We also find that entanglement is increasingly sparser in higher dimensions. We conclude that entanglement in Minkowski spacetime is significantly less ubiquitous than normally thought.  
  Address [Agullo, Ivan; Ribes-Metidieri, Patricia; Kranas, Dimitrios; Nadal-Gisbert, Sergi] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001157784100011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5936  
Permanent link to this record
 

 
Author (up) Baeza-Ballesteros, J.; Donini, A.; Nadal-Gisbert, S. url  doi
openurl 
  Title Dynamical measurements of deviations from Newton's 1/r(2) law Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 2 Pages 154 - 30pp  
  Keywords  
  Abstract In Ref. Donini and Marimon (Eur Phys J C 76:696, arXiv:1609.05654, 2016), an experimental setup aiming at the measurement of deviations from the Newtonian 1/r(2) distance dependence of gravitational interactions was proposed. The theoretical idea behind this setup was to study the trajectories of a “Satellite” with a mass m(S) similar to O(10(-9)) g around a “Planet” with mass m(P) is an element of [10(-7), 10(-5)] g, looking for precession of the orbit. The observation of such feature induced by gravitational interactions would be an unambiguous indication of a gravitational potential with terms different from 1/r and, thus, a powerful tool to detect deviations from Newton's 1/r(2) law. In this paper we optimize the proposed setup in order to achieve maximal sensitivity to look for such Beyond-Newtonian corrections. We then study in detail possible background sources that could induce precession and quantify their impact on the achievable sensitivity. We finally conclude that a dynamical measurement of deviations from newtonianity can test Yukawa-like corrections to the 1/r potential with strength as low as alpha similar to 10(-2) for distances as small as lambda similar to 10 μm.  
  Address [Baeza-Ballesteros, J.; Donini, A.; Nadal-Gisbert, S.] Univ Valencia, Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: jorge.baeza@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000757843300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5147  
Permanent link to this record
 

 
Author (up) Beltran-Palau, P.; del Rio, A.; Nadal-Gisbert, S.; Navarro-Salas, J. url  doi
openurl 
  Title Note on the pragmatic mode-sum regularization method: Translational-splitting in a cosmological background Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 10 Pages 105002 - 9pp  
  Keywords  
  Abstract The point-splitting renormalization method offers a prescription to calculate finite expectation values of quadratic operators constructed from quantum fields in a general curved spacetime. It has been recently shown by Levi and Ori that when the background metric possesses an isometry, like stationary or spherically symmetric black holes, the method can be upgraded into a pragmatic procedure of renormalization that produces efficient numerical calculations. In this paper we show that when the background enjoys three-dimensional spatial symmetries, like homogeneous expanding universes, the above pragmatic regularization technique reduces to the well-established adiabatic regularization method.  
  Address [Beltran-Palau, Pau; Nadal-Gisbert, Sergi; Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC,Fac Fis, Valencia 46100, Spain, Email: pau.beltran@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000655874400009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4845  
Permanent link to this record
 

 
Author (up) Ferreiro, A.; Nadal-Gisbert, S.; Navarro-Salas, J. url  doi
openurl 
  Title Renormalization, running couplings, and decoupling for the Yukawa model in a curved spacetime Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue 2 Pages 025003 - 8pp  
  Keywords  
  Abstract The decoupling of heavy fields as required by the Appelquist-Carazzone theorem plays a fundamental role in the construction of any effective field theory. However, it is not a trivial task to implement a renormalization prescription that produces the expected decoupling of massive fields, and it is even more difficult in curved spacetime. Focused on this idea, we consider the renormalization of the one-loop effective action for the Yukawa interaction with a background scalar field in curved space. We compute the beta functions within a generalized DeWitt-Schwinger subtraction procedure and discuss the decoupling in the running of the coupling constants. For the case of a quantized scalar field, all the beta function exhibit decoupling, including also the gravitational ones. For a quantized Dirac field, decoupling appears almost for all the beta functions. We obtain the anomalous result that the mass of the background scalar field does not decouple.  
  Address [Ferreiro, Antonio; Nadal-Gisbert, Sergi; Navarro-Salas, Jose] Univ Valencia, Fac Fis, Dept Fis Teor, Valencia 46100, Spain, Email: antonio.ferreiro@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000669563900006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4896  
Permanent link to this record
 

 
Author (up) Nadal-Gisbert, S.; Navarro-Salas, J.; Pla, S. url  doi
openurl 
  Title Low-energy states and CPT invariance at the big bang Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 8 Pages 085018 - 16pp  
  Keywords  
  Abstract In this paper, we analyze the quantum vacuum in a radiation-dominated and CPT -invariant universe by further imposing the quantum states to be ultraviolet regular i.e., satisfying the Hadamard/adiabatic condition. For scalar fields, this is enforced by constructing the vacuum via the states of low-energy proposal. For spin -12 fields, we extend this proposal for a FLRW spacetime and apply it for the radiation-dominated and CPT -invariant universe. We focus on minimizing the smeared energy density around the big bang and give strong evidence that the resulting states satisfy the Hadamard/adiabatic condition. These states are then self -consistent candidates as effective big bang quantum vacuum from the field theory perspective.  
  Address [Nadal-Gisbert, Sergi; Navarro-Salas, Jose] Univ Valencia, Ctr Mixto Univ Valencia, CSIC Fac Fis, Dept Fis Teor, Valencia 46100, Spain, Email: sergi.nadal@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000981997800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5585  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva