toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Albaladejo, M.; Moussallam, B. url  doi
openurl 
  Title Extended chiral Khuri-Treiman formalism for eta -> 3 pi and the role of the a(0)(980), f(0)(980) resonances Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 8 Pages 508 - 23pp  
  Keywords  
  Abstract Recent experiments on eta -> 3 pi decays have provided an extremely precise knowledge of the amplitudes across the Dalitz region which represent stringent constraints on theoretical descriptions. We reconsider an approach in which the low-energy chiral expansion is assumed to be optimally convergent in an unphysical region surrounding the Adler zero, and the amplitude in the physical region is uniquely deduced by an analyticity-based extrapolation using the Khuri-Treiman dispersive formalism. We present an extension of the usual formalism which implements the leading inelastic effects from the K (K) over bar channel in the final-state pi pi interaction as well as in the initial-state eta pi interaction. The constructed amplitude has an enlarged region of validity and accounts in a realistic way for the influence of the two light scalar resonances f(0)(980) and a(0)(980) in the dispersive integrals. It is shown that the effect of these resonances in the low-energy region of the eta -> 3 pi decay is not negligible, in particular for the 3 pi(0) mode, and improves the description of the energy variation across the Dalitz plot. Some remarks are made on the scale dependence and the value of the double quark mass ratio Q.  
  Address [Albaladejo, M.] Univ Valencia, CSIC, Ctr Mixto, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: moussall@ipno.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406687400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3229  
Permanent link to this record
 

 
Author (up) Albaladejo, M.; Moussallam, B. url  doi
openurl 
  Title Form factors of the isovector scalar current and the eta pi scattering phase shifts Type Journal Article
  Year 2015 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 75 Issue 10 Pages 488 - 16pp  
  Keywords  
  Abstract A model for S-wave eta pi scattering is proposed which could be realistic in an energy range from threshold up to above 1 GeV, where inelasticity is dominated by the K (K) over bar channel. The T-matrix, satisfying two-channel unitarity, is given in a form which matches the chiral expansion results at order p(4) exactly for the eta pi -> eta pi, eta pi -> K (K) over bar amplitudes and approximately for K (K) over bar -> K (K) over bar. It contains six phenomenological parameters. Asymptotic conditions are imposed which ensure a minimal solution of the Muskhelishvili-Omnes problem, thus allowing one to compute the eta pi and K (K) over bar form factor matrix elements of the I = 1 scalar current from the T-matrix. The phenomenological parameters are determined such as to reproduce the experimental properties of the a(0)(980), a(0)(1450) resonances, as well as the chiral results of the eta pi and K (K) over bar scalar radii, which are predicted to be remarkably small at O(p(4)). This T-matrix model could be used for a unified treatment of the eta pi final-state interaction problem in processes such as eta ' -> eta pi pi, phi -> eta pi gamma or the eta pi initial-state interaction in eta -> 3 pi.  
  Address [Albaladejo, M.; Moussallam, B.] Univ Paris 11, Grp Phys Theor, IPN UMR8608, Orsay, France, Email: Miguel.Albaladejo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000362951600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2415  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva